Question Number 196471 by Tawa11 last updated on 25/Aug/23

Answered by mr W last updated on 25/Aug/23
![=∫_0 ^1 (dx/(2+x)) =[ln (2+x)]_0 ^1 =ln 3−ln 2 =ln (3/2)](https://www.tinkutara.com/question/Q196472.png)
Commented by Tawa11 last updated on 25/Aug/23

Commented by Tawa11 last updated on 25/Aug/23

Commented by mr W last updated on 25/Aug/23

Commented by mr W last updated on 25/Aug/23

Commented by mr W last updated on 25/Aug/23
![generally Δx=(1/n) ∫_0 ^1 f(x)dx≈y_1 Δx+y_2 Δx+...+y_k Δx+...+y_n Δx ∫_0 ^1 f(x)dx≈(y_1 +y_2 +...+y_k +...+y_n )Δx ∫_0 ^1 f(x)dx≈[f(x_1 )+f(x_2 )+...+f(x_k )+...+f(x_n )]Δx ∫_0 ^1 f(x)dx≈[f(Δx)+f(2Δx)+...+f(kΔx)+...+f(nΔx)]Δx ∫_0 ^1 f(x)dx≈[f((1/n))+f((2/b))+...+f((k/n))+...+f((n/n))](1/n) ∫_0 ^1 f(x)dx≈(1/n)Σ_(k=1) ^n f((k/n)) ∫_0 ^1 f(x)dx=lim_(n→∞) [(1/n)Σ_(k=1) ^n f((k/n))] in current case: f(x)=(1/(2+x))](https://www.tinkutara.com/question/Q196482.png)
Commented by Tawa11 last updated on 25/Aug/23
