Menu Close

lim-n-1-n-1-2-1-n-1-2-2-n-1-2-3-n-1-2-n-n-




Question Number 196471 by Tawa11 last updated on 25/Aug/23
lim_(n→∞)  (1/n)((1/(2  +  (1/n)))  +  (1/(2  +  (2/n)))  +  (1/(2  +  (3/n)))  +  ..  +  (1/(2  +  (n/n))))
limn1n(12+1n+12+2n+12+3n+..+12+nn)
Answered by mr W last updated on 25/Aug/23
=∫_0 ^1 (dx/(2+x))  =[ln (2+x)]_0 ^1   =ln 3−ln 2  =ln (3/2)
=01dx2+x=[ln(2+x)]01=ln3ln2=ln32
Commented by Tawa11 last updated on 25/Aug/23
God bless you sir. I appreciate.
Godblessyousir.Iappreciate.
Commented by Tawa11 last updated on 25/Aug/23
Sir is the sum a general term I should know?  Or you solved to get  ∫_0 ^1  (1/(2 + x)) dx
SiristhesumageneraltermIshouldknow?Oryousolvedtoget0112+xdx
Commented by mr W last updated on 25/Aug/23
∫_0 ^1 (1/(2+x))dx  =lim_(Δx→0) Σ(1/(2+x_k ))×Δx  =lim_(n→∞) Σ_(k=1) ^n (1/(2+(k/n)))×(1/n)  =lim_(n→∞) ((1/n)Σ_(k=1) ^n (1/(2+(k/n))))
0112+xdx=limΔx0Σ12+xk×Δx=limnnk=112+kn×1n=limn(1nnk=112+kn)
Commented by mr W last updated on 25/Aug/23
Commented by mr W last updated on 25/Aug/23
generally  Δx=(1/n)  ∫_0 ^1 f(x)dx≈y_1 Δx+y_2 Δx+...+y_k Δx+...+y_n Δx  ∫_0 ^1 f(x)dx≈(y_1 +y_2 +...+y_k +...+y_n )Δx  ∫_0 ^1 f(x)dx≈[f(x_1 )+f(x_2 )+...+f(x_k )+...+f(x_n )]Δx  ∫_0 ^1 f(x)dx≈[f(Δx)+f(2Δx)+...+f(kΔx)+...+f(nΔx)]Δx  ∫_0 ^1 f(x)dx≈[f((1/n))+f((2/b))+...+f((k/n))+...+f((n/n))](1/n)  ∫_0 ^1 f(x)dx≈(1/n)Σ_(k=1) ^n f((k/n))  ∫_0 ^1 f(x)dx=lim_(n→∞) [(1/n)Σ_(k=1) ^n f((k/n))]  in current case: f(x)=(1/(2+x))
generallyΔx=1n01f(x)dxy1Δx+y2Δx++ykΔx++ynΔx01f(x)dx(y1+y2++yk++yn)Δx01f(x)dx[f(x1)+f(x2)++f(xk)++f(xn)]Δx01f(x)dx[f(Δx)+f(2Δx)++f(kΔx)++f(nΔx)]Δx01f(x)dx[f(1n)+f(2b)++f(kn)++f(nn)]1n01f(x)dx1nnk=1f(kn)01f(x)dx=limn[1nnk=1f(kn)]incurrentcase:f(x)=12+x
Commented by Tawa11 last updated on 25/Aug/23
Wow, I really appreciate sir.
Wow,Ireallyappreciatesir.

Leave a Reply

Your email address will not be published. Required fields are marked *