sec-4-x-cot-4-x-dx- Tinku Tara August 25, 2023 Integration 0 Comments FacebookTweetPin Question Number 196487 by RoseAli last updated on 25/Aug/23 ∫(sec4x−cot4x)dx Answered by MM42 last updated on 26/Aug/23 I1=∫sec4xdx=∫(1+tan2x)(1+tan2x)dxlettanx=u⇒I1=∫(1+u2)du=u+13u3+c1=tanx+13tan3x+c1I2=∫cot4xdx=∫(cot4x+cot2x−cot2x−1+1)dx=∫[cot2x(1+cot2x)−(1+cot2x)+1]dx=−13cot3x+cotx+x+c2⇒I=tanx−cotx+13(tan3x+cot3x)−x+c✓ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-196486Next Next post: k-o-n-1-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.