Menu Close

sec-4-x-cot-4-x-dx-




Question Number 196487 by RoseAli last updated on 25/Aug/23
∫(sec^4 x−cot^4 x)dx
(sec4xcot4x)dx
Answered by MM42 last updated on 26/Aug/23
I_1 =∫sec^4 xdx=∫(1+tan^2 x)(1+tan^2 x)dx  let  tanx=u⇒  I_1 =∫(1+u^2 )du=u+(1/3)u^3 +c_1 =tanx+(1/3)tan^3 x+c_1   I_2 =∫cot^4 xdx=∫(cot^4 x+cot^2 x−cot^2 x−1+1)dx  =∫ [cot^2 x(1+cot^2 x)−(1+cot^2 x)+1]dx  =− (1/3)cot^3 x+cotx+x+c_2   ⇒I=tanx−cotx+(1/3)(tan^3 x+cot^3 x)−x+c ✓
I1=sec4xdx=(1+tan2x)(1+tan2x)dxlettanx=uI1=(1+u2)du=u+13u3+c1=tanx+13tan3x+c1I2=cot4xdx=(cot4x+cot2xcot2x1+1)dx=[cot2x(1+cot2x)(1+cot2x)+1]dx=13cot3x+cotx+x+c2I=tanxcotx+13(tan3x+cot3x)x+c

Leave a Reply

Your email address will not be published. Required fields are marked *