Menu Close

if-xyz-1-prove-x-x-1-2-y-y-1-2-z-z-1-2-1-




Question Number 196519 by mr W last updated on 26/Aug/23
if xyz=1, prove  ((x/(x−1)))^2 +((y/(y−1)))^2 +((z/(z−1)))^2 ≥1.
ifxyz=1,prove(xx1)2+(yy1)2+(zz1)21.
Answered by mahdipoor last updated on 27/Aug/23
f(x,y,z)=((x/(x−1)))^2 +((y/(y−1)))^2 +((z/(z−1)))^2   g(x,y,z)=xyz=1  if p=(X,Y,Z) is extermum f in D_f =D_g   ⇒▽^→ f(p)=λ▽^→ g(p)  I     ⇒2((X/(X−1)))(((−1)/((X−1)^2 )))=λ(YZ)  II   ⇒2((Y/(Y−1)))(((−1)/((Y−1)^2 )))=λ(XZ)  III⇒2((Z/(Z−1)))(((−1)/((Z−1)^2 )))=λ(XY)  IV ⇒XYZ=1  X,Y=0 , Z=∞  or etc  ⇒f(0,0,∞)=1=minimum  f((x,y,z)∈D_g )>1
f(x,y,z)=(xx1)2+(yy1)2+(zz1)2g(x,y,z)=xyz=1ifp=(X,Y,Z)isextermumfinDf=Dgf(p)=λg(p)I2(XX1)(1(X1)2)=λ(YZ)II2(YY1)(1(Y1)2)=λ(XZ)III2(ZZ1)(1(Z1)2)=λ(XY)IVXYZ=1X,Y=0,Z=oretcf(0,0,)=1=minimumf((x,y,z)Dg)>1
Commented by AST last updated on 27/Aug/23
f((1/4),−2,−2)=1
f(14,2,2)=1

Leave a Reply

Your email address will not be published. Required fields are marked *