Menu Close

Prove-that-n-N-n-1-n-lnt-dt-ln-n-1-n-t-dt-




Question Number 196522 by Erico last updated on 26/Aug/23
Prove that ∀n∈N  ∫^( n+1) _( n) lnt dt ≤ ln(∫^( n+1) _n t dt)
ProvethatnNnn+1lntdtln(nn+1tdt)
Answered by aleks041103 last updated on 26/Aug/23
∫ln(t)dt = tln(t)−t  ⇒∫_n ^(n+1) ln(t)dt=  =(n+1)ln(n+1)−n−1−(n ln(n)−n)=  = n ln(1+(1/n)) + ln(n+1) − 1  ln(∫_n ^( n+1) tdt) = ln(n+(1/2))  ln(1+(1/n))<(1/n)−(1/(2n^2 ))  ⇒∫_n ^(n+1) ln(t)dt−ln(∫_n ^( n+1) tdt)<−(1/(2n))+ln(((n+1)/(n+(1/2))))=  =ln(1+(1/(2n+1)))−(1/(2n))<(1/(2n+1))−(1/(2(2n+1)^2 ))−(1/(2n))<0  ⇒∫_n ^(n+1) ln(t)dt≤ln(∫_n ^( n+1) tdt)
ln(t)dt=tln(t)tnn+1ln(t)dt==(n+1)ln(n+1)n1(nln(n)n)==nln(1+1n)+ln(n+1)1ln(nn+1tdt)=ln(n+12)ln(1+1n)<1n12n2nn+1ln(t)dtln(nn+1tdt)<12n+ln(n+1n+12)==ln(1+12n+1)12n<12n+112(2n+1)212n<0nn+1ln(t)dtln(nn+1tdt)

Leave a Reply

Your email address will not be published. Required fields are marked *