Menu Close

Question-196496




Question Number 196496 by RoseAli last updated on 26/Aug/23
Answered by witcher3 last updated on 26/Aug/23
∫(1/(tg^2 (x).cos^6 (x)))  =∫((1+tg^2 (x))/(tg^2 (x))).(1+tg^2 (x))^2 dx  tg(x)=y  ⇔∫(((1+y^2 )^2 )/y^2 )dy.....
$$\int\frac{\mathrm{1}}{\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right).\mathrm{cos}^{\mathrm{6}} \left(\mathrm{x}\right)} \\ $$$$=\int\frac{\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right)}.\left(\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{tg}\left(\mathrm{x}\right)=\mathrm{y} \\ $$$$\Leftrightarrow\int\frac{\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{y}^{\mathrm{2}} }\mathrm{dy}….. \\ $$
Commented by York12 last updated on 26/Aug/23
Sir What Calculus book do you recommend  For Theory And problems
$${Sir}\:{What}\:{Calculus}\:{book}\:{do}\:{you}\:{recommend} \\ $$$${For}\:{Theory}\:{And}\:{problems} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *