Menu Close

If-x-log-a-bc-y-log-b-ca-and-z-log-c-ab-then-prove-that-x-y-z-xyz-2-




Question Number 196582 by MATHEMATICSAM last updated on 27/Aug/23
If x = log_a bc, y = log_b ca and z = log_c ab  then prove that x + y + z = xyz − 2.
Ifx=logabc,y=logbcaandz=logcabthenprovethatx+y+z=xyz2.
Answered by som(math1967) last updated on 27/Aug/23
x=log_a bc⇒1+x=log_(a ) a+log_a bc   ⇒1+x=log_a abc⇒(1/(1+x))=log_(abc) a  same way (1/(1+y))=log_(abc) b   (1/(1+z))=log_(abc) c  ∴ (1/(1+x))+(1/(1+y))+(1/(1+z))=log_(abc) abc=1  ⇒ ((1+y+1+x)/((1+x)(1+y)))=(z/(1+z))  ⇒2z+yz+zx+2+x+y=z(1+x+y+xy)  ⇒2z+yz+zx+2+x+y         =z+zx+yz+xyz  ∴ x+y+z=xyz−2
x=logabc1+x=logaa+logabc1+x=logaabc11+x=logabcasameway11+y=logabcb11+z=logabcc11+x+11+y+11+z=logabcabc=11+y+1+x(1+x)(1+y)=z1+z2z+yz+zx+2+x+y=z(1+x+y+xy)2z+yz+zx+2+x+y=z+zx+yz+xyzx+y+z=xyz2

Leave a Reply

Your email address will not be published. Required fields are marked *