Question Number 196534 by cortano12 last updated on 27/Aug/23
$$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{x}}\right)}\:=? \\ $$
Answered by Mathspace last updated on 27/Aug/23
$$\mathrm{1}−{cosu}\sim\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\left({u}\rightarrow{o}\right)\:\Rightarrow \\ $$$$\mathrm{1}−{cos}\left(\frac{\pi}{{x}}\right)\sim\frac{\pi^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} }\:\left({x}\rightarrow\infty\right)\:{and} \\ $$$$\sqrt{\mathrm{1}−{cos}\left(\frac{\pi}{{x}}\right)}\sim\frac{\pi}{\mathrm{2}\mid{x}\mid}\:\Rightarrow \\ $$$${x}\sqrt{\mathrm{1}−{cos}\left(\frac{\pi}{{x}}\right)}\sim\frac{\pi}{\mathrm{2}}{s}\left({x}\right) \\ $$$${s}\left({x}\right)=\mathrm{1}\:{if}\:{x}>\mathrm{0}\:{and}\:{s}\left({x}\right)=−\mathrm{1} \\ $$$${if}\:{x}<\mathrm{0}\:{so} \\ $$$${lim}_{{x}\rightarrow\infty} {x}\sqrt{\mathrm{1}−{cos}\left(\frac{\pi}{{x}}\right)}=\overset{−} {+}\frac{\pi}{\mathrm{2}} \\ $$
Answered by Frix last updated on 27/Aug/23