Menu Close

lim-x-x-1-cos-pi-x-




Question Number 196534 by cortano12 last updated on 27/Aug/23
        lim_(x→∞)  x (√(1−cos ((π/x)))) =?
limxx1cos(πx)=?
Answered by Mathspace last updated on 27/Aug/23
1−cosu∼(u^2 /2) (u→o) ⇒  1−cos((π/x))∼(π^2 /(2x^2 )) (x→∞) and  (√(1−cos((π/x))))∼(π/(2∣x∣)) ⇒  x(√(1−cos((π/x))))∼(π/2)s(x)  s(x)=1 if x>0 and s(x)=−1  if x<0 so  lim_(x→∞) x(√(1−cos((π/x))))=+^− (π/2)
1cosuu22(uo)1cos(πx)π22x2(x)and1cos(πx)π2xx1cos(πx)π2s(x)s(x)=1ifx>0ands(x)=1ifx<0solimxx1cos(πx)=+π2
Answered by Frix last updated on 27/Aug/23
0<t=(√(1−cos (π/x))) ⇔ x=(π/(cos^(−1)  (1−t^2 )))  x→∞ ⇒ t→0  lim_(x→∞)  x(√(1−cos (π/x))) =  =lim_(t→0^+ )  ((πt)/(cos^(−1)  (1−t^2 ))) =     [l′Ho^� pital]  =lim_(t→0^+ )  (π/(2/( (√(2−t^2 ))))) =(π/( (√2)))
0<t=1cosπxx=πcos1(1t2)xt0limxx1cosπx==limt0+πtcos1(1t2)=[lHopital^]=limt0+π22t2=π2

Leave a Reply

Your email address will not be published. Required fields are marked *