Question Number 196557 by BHOOPENDRA last updated on 27/Aug/23
Answered by qaz last updated on 27/Aug/23
$$\int_{\mathrm{0}} ^{{t}} {e}^{−{u}} \mathrm{sin}\:{udu}=−\Im\int_{\mathrm{0}} ^{{t}} {e}^{−\left(\mathrm{1}+{i}\right){u}} {du}=\Im\frac{\mathrm{1}}{\mathrm{1}+{i}}\left({e}^{−\left(\mathrm{1}+{i}\right){t}} −\mathrm{1}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{t}} \left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} \frac{\mathrm{1}}{{t}}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{t}} \left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}}\left({e}^{−{t}} −{e}^{−\mathrm{2}{t}} \left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \mathrm{1}\centerdot\left(\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{\mathrm{1}+\left(\mathrm{2}+{t}\right)}{\left(\mathrm{2}+{t}\right)^{\mathrm{2}} +\mathrm{1}}\right){dt} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{4}}{ln}\frac{\mathrm{1}+\mathrm{2}{t}+{t}^{\mathrm{2}} }{\mathrm{5}+\mathrm{4}{t}+{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\left(\mathrm{2}+{t}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{5}−\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\mathrm{2} \\ $$