Question Number 196595 by sonukgindia last updated on 27/Aug/23
Answered by Rasheed.Sindhi last updated on 28/Aug/23
$${f}\left({x}\right)=\frac{{ax}^{\mathrm{2}} +{bx}+{c}}{{dx}+{e}} \\ $$$${f}\left({x}\right)+{f}\left(−{x}\right)=\frac{{ax}^{\mathrm{2}} +{bx}+{c}}{{dx}+{e}}+\frac{{ax}^{\mathrm{2}} −{bx}+{c}}{−{dx}+{e}} \\ $$$$=\frac{\left({ax}^{\mathrm{2}} +{bx}+{c}\right)\left({e}−{dx}\right)+\left({ax}^{\mathrm{2}} −{bx}+{c}\right)\left({e}+{dx}\right)}{\left({e}+{dx}\right)\left({e}−{dx}\right)} \\ $$$$=\frac{{aex}^{\mathrm{2}} +{bex}+{ce}−\cancel{{adx}^{\mathrm{3}} }−{bdx}^{\mathrm{2}} −{cdx}+{aex}^{\mathrm{2}} −{bex}+{ce}+\cancel{{adx}^{\mathrm{3}} }−{bdx}^{\mathrm{2}} +{cdx}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}\left({ae}−{bd}\right){x}^{\mathrm{2}} +\mathrm{2}{ce}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$$\begin{array}{|c|}{{f}\left({x}\right)+{f}\left(−{x}\right)=\frac{\mathrm{2}\left({ae}−{bd}\right){x}^{\mathrm{2}} +\mathrm{2}{ce}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} {x}^{\mathrm{2}} }}\\\hline\end{array}\: \\ $$$${f}\left(\mathrm{0}\right)+{f}\left(−\mathrm{0}\right)=\frac{\mathrm{2}{ce}}{{e}^{\mathrm{2}} }=\frac{\mathrm{2}{c}}{{e}} \\ $$$${f}\left(\mathrm{0}\right)=\frac{{c}}{{e}} \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(−\mathrm{1}\right)=\frac{\mathrm{2}\left({ae}−{bd}\right)\left(\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}{ce}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} \left(\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}\left({ae}−{bd}\right)+\mathrm{2}{ce}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} }=\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\mathrm{6}\left({ae}−{bd}\right)+\mathrm{6}{ce}−\mathrm{8}{e}^{\mathrm{2}} +\mathrm{8}{d}^{\mathrm{2}} =\mathrm{0} \\ $$$$\begin{array}{|c|}{\mathrm{3}\left({ae}−{bd}\right)+\mathrm{3}{ce}−\mathrm{4}{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} =\mathrm{0}}\\\hline\end{array} \\ $$$${ae}−{bd}=\frac{−\mathrm{3}{ce}+\mathrm{4}{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} }{\mathrm{3}}….\left({i}\right) \\ $$$${f}\left(\mathrm{2}\right)+{f}\left(−\mathrm{2}\right)=\frac{\mathrm{2}\left({ae}−{bd}\right)\left(\mathrm{2}\right)^{\mathrm{2}} +\mathrm{2}{ce}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} \left(\mathrm{2}\right)^{\mathrm{2}} }=\frac{\mathrm{11}}{\mathrm{13}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}\left({ae}−{bd}\right)+{ce}}{{e}^{\mathrm{2}} −\mathrm{4}{d}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{13}} \\ $$$$\mathrm{5}\left({ae}−{bd}\right)+\mathrm{13}{ce}=−{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} \\ $$$$\mathrm{5}\left({ae}−{bd}\right)+\mathrm{13}{ce}+{e}^{\mathrm{2}} −\mathrm{4}{d}^{\mathrm{2}} =\mathrm{0} \\ $$$$\begin{array}{|c|}{\mathrm{5}\left({ae}−{bd}\right)+\mathrm{13}{ce}+{e}^{\mathrm{2}} −\mathrm{4}{d}^{\mathrm{2}} =\mathrm{0}}\\\hline\end{array} \\ $$$${ae}−{bd}=\frac{−\mathrm{13}{ce}−{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} }{\mathrm{5}}…\left({ii}\right) \\ $$$${f}\left(\mathrm{3}\right)={p}\:=\frac{\mathrm{9}{a}+\mathrm{3}{b}+{c}}{\mathrm{3}{d}+{e}} \\ $$$${f}\left(\mathrm{3}\right)+{f}\left(−\mathrm{3}\right)=\frac{\mathrm{2}\left({ae}−{bd}\right)\left(\mathrm{3}\right)^{\mathrm{2}} +\mathrm{2}{ce}}{{e}^{\mathrm{2}} −{d}^{\mathrm{2}} \left(\mathrm{3}\right)^{\mathrm{2}} }={p}−\frac{\mathrm{6}}{\mathrm{7}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{18}\left({ae}−{bd}\right)+\mathrm{2}{ce}}{{e}^{\mathrm{2}} −\mathrm{9}{d}^{\mathrm{2}} }=\frac{\mathrm{7}{p}−\mathrm{6}}{\mathrm{7}} \\ $$$$\:\:\:\:\mathrm{126}\left({ae}−{bd}\right)+\mathrm{14}{ce}=\left(\mathrm{7}{p}−\mathrm{6}\right){e}^{\mathrm{2}} −\mathrm{9}\left(\mathrm{7}{p}−\mathrm{6}\right){d}^{\mathrm{2}} \:{Where} \\ $$$$\begin{array}{|c|}{\underset{{Where}\:{p}\:=\frac{\mathrm{9}{a}−\mathrm{3}{b}+{c}}{−\mathrm{3}{d}+{e}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {\mathrm{126}\left({ae}−{bd}\right)+\mathrm{14}{ce}−\left(\mathrm{7}{p}−\mathrm{6}\right){e}^{\mathrm{2}} +\mathrm{9}\left(\mathrm{7}{p}−\mathrm{6}\right){d}^{\mathrm{2}} =\mathrm{0}}}\\\hline\end{array} \\ $$$${ae}−{bd}=\frac{−\mathrm{14}{ce}+\left(\mathrm{7}{p}−\mathrm{6}\right){e}^{\mathrm{2}} −\mathrm{9}\left(\mathrm{7}{p}−\mathrm{6}\right){d}^{\mathrm{2}} }{\mathrm{126}} \\ $$$$\left({i}\right),\left({ii}\right)\:\&\:\left({iii}\right)\Rightarrow \\ $$$$\frac{−\mathrm{3}{ce}+\mathrm{4}{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} }{\mathrm{3}}=\frac{−\mathrm{13}{ce}−{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} }{\mathrm{5}}=\frac{−\mathrm{14}{ce}+\left(\mathrm{7}{p}−\mathrm{6}\right){e}^{\mathrm{2}} −\mathrm{9}\left(\mathrm{7}{p}−\mathrm{6}\right){d}^{\mathrm{2}} }{\mathrm{126}} \\ $$$$\mathrm{210}\left(−\mathrm{3}{ce}+\mathrm{4}{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} \right)=\mathrm{126}\left(−\mathrm{13}{ce}−{e}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} \right)=\mathrm{5}\left(−\mathrm{14}{ce}+\left(\mathrm{7}{p}−\mathrm{6}\right){e}^{\mathrm{2}} −\mathrm{9}\left(\mathrm{7}{p}−\mathrm{6}\right){d}^{\mathrm{2}} \right) \\ $$$$…… \\ $$$${f}\left(\mathrm{1}\right)=\frac{{a}+{b}+{c}}{{d}+{e}}=\frac{\mathrm{2}}{\mathrm{3}}\Rightarrow\mathrm{3}{a}+\mathrm{3}{b}+\mathrm{3}{c}=\mathrm{2}{d}+\mathrm{2}{e} \\ $$$${f}\left(−\mathrm{1}\right)=\frac{{a}−{b}+{c}}{−{d}+{e}}=\mathrm{2} \\ $$$${f}\left(\mathrm{2}\right)=\frac{\mathrm{4}{a}+\mathrm{2}{b}+{c}}{\mathrm{2}{d}+{e}}=\frac{\mathrm{11}}{\mathrm{13}} \\ $$$${f}\left(−\mathrm{2}\right)=\frac{\mathrm{4}{a}−\mathrm{2}{b}+{c}}{−\mathrm{2}{d}+{e}}=−\mathrm{1} \\ $$$${f}\left(−\mathrm{3}\right)=\frac{\mathrm{9}{a}−\mathrm{3}{b}+{c}}{−\mathrm{3}{d}+{e}}=−\frac{\mathrm{6}}{\mathrm{7}} \\ $$