Menu Close

if-S-n-1-1-5n-1-2-5n-1-3-5n-1-6n-find-lim-n-S-n-




Question Number 196614 by mr W last updated on 28/Aug/23
if S_n =(1/(1+5n))+(1/(2+5n))+(1/(3+5n))+...+(1/(6n)),  find lim_(n→∞) S_n =?
$${if}\:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{5}{n}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{5}{n}}+\frac{\mathrm{1}}{\mathrm{3}+\mathrm{5}{n}}+…+\frac{\mathrm{1}}{\mathrm{6}{n}}, \\ $$$${find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =? \\ $$
Answered by universe last updated on 28/Aug/23
log 6/5
$$\mathrm{log}\:\mathrm{6}/\mathrm{5} \\ $$
Commented by mr W last updated on 28/Aug/23
��
Answered by sniper237 last updated on 28/Aug/23
S_n = (1/n) Σ_(k=1) ^n (1/(5+(k/n))) →_∞  ∫_0 ^1 (dx/(5+x))=ln((6/5))
$${S}_{{n}} =\:\frac{\mathrm{1}}{{n}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{5}+\frac{{k}}{{n}}}\:\underset{\infty} {\rightarrow}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{5}+{x}}={ln}\left(\frac{\mathrm{6}}{\mathrm{5}}\right) \\ $$
Commented by mr W last updated on 28/Aug/23
��

Leave a Reply

Your email address will not be published. Required fields are marked *