Menu Close

If-ax-loga-bx-logb-then-prove-that-x-1-ab-




Question Number 196690 by MATHEMATICSAM last updated on 29/Aug/23
If (ax)^(loga)  = (bx)^(logb)  then prove that  x = (1/(ab)) .
If(ax)loga=(bx)logbthenprovethatx=1ab.
Answered by BaliramKumar last updated on 29/Aug/23
loga∙log(ax) = logb∙log(bx)  loga∙(loga + logx) = logb∙(logb + logx)  log^2 a + loga∙ logx = log^2 b + logb∙logx  loga∙ logx −  logb∙logx = log^2 b − log^2 a  logx(loga − logb) = (logb − loga)(logb + loga)  logx∙log((a/b)) = −log((a/b))∙logab  logx = −log(ab)  logx = log((1/(ab)))  x = (1/(ab))
logalog(ax)=logblog(bx)loga(loga+logx)=logb(logb+logx)log2a+logalogx=log2b+logblogxlogalogxlogblogx=log2blog2alogx(logalogb)=(logbloga)(logb+loga)logxlog(ab)=log(ab)logablogx=log(ab)logx=log(1ab)x=1ab

Leave a Reply

Your email address will not be published. Required fields are marked *