Menu Close

If-y-e-x-e-x-e-x-e-x-then-show-that-x-1-2-log-e-1-y-1-y-




Question Number 196683 by MATHEMATICSAM last updated on 29/Aug/23
If y = ((e^x  − e^(− x) )/(e^x  + e^(− x) )) then show that  x = (1/2)log_e (((1 + y)/(1 − y))).
$$\mathrm{If}\:{y}\:=\:\frac{{e}^{{x}} \:−\:{e}^{−\:{x}} }{{e}^{{x}} \:+\:{e}^{−\:{x}} }\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}_{{e}} \left(\frac{\mathrm{1}\:+\:{y}}{\mathrm{1}\:−\:{y}}\right). \\ $$
Answered by Frix last updated on 29/Aug/23
y=((e^(2x) −1)/(e^(2x) +1))  e^(2x) =((1+y)/(1−y))  2x=ln ((1+y)/(1−y))  x=(1/2)ln ((1+y)/(1−y))
$${y}=\frac{\mathrm{e}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{e}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$$$\mathrm{e}^{\mathrm{2}{x}} =\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$$$\mathrm{2}{x}=\mathrm{ln}\:\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$
Answered by som(math1967) last updated on 29/Aug/23
 (1/y)=((e^x +(1/e^x ))/(e^x −(1/e^x )))  ⇒((1+y)/(1−y))=((2e^x )/(2/e^x ))  ⇒((1+y)/(1−y))=e^(2x)   ⇒log_e (((1+y)/(1−y)))=log_e e^(2x)   ∴2x=log_e (((1+y)/(1−y)))   x=(1/2)log_e (((1+y)/(1−y)))
$$\:\frac{\mathrm{1}}{{y}}=\frac{{e}^{{x}} +\frac{\mathrm{1}}{{e}^{{x}} }}{{e}^{{x}} −\frac{\mathrm{1}}{{e}^{{x}} }} \\ $$$$\Rightarrow\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}=\frac{\mathrm{2}{e}^{{x}} }{\frac{\mathrm{2}}{{e}^{{x}} }} \\ $$$$\Rightarrow\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}={e}^{\mathrm{2}{x}} \\ $$$$\Rightarrow{log}_{{e}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right)={log}_{{e}} {e}^{\mathrm{2}{x}} \\ $$$$\therefore\mathrm{2}{x}={log}_{{e}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right) \\ $$$$\:{x}=\frac{\mathrm{1}}{\mathrm{2}}{log}_{{e}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *