Question Number 196674 by Erico last updated on 29/Aug/23
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} +\underset{\mathrm{p}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{p}} \mathrm{pln}\left(\frac{\mathrm{p}+\mathrm{1}}{\mathrm{p}−\mathrm{1}}\right)=\mathrm{ln}\left(\pi\right) \\ $$