Menu Close

Question-196697




Question Number 196697 by mr W last updated on 29/Aug/23
Commented by mr W last updated on 29/Aug/23
��
Commented by mr W last updated on 29/Aug/23
a ball is released from a height of h   above a long inclined plane as shown.  if the coefficient of restitution is e,  find the velocity of the ball just after  the n^(th)  collision.
$${a}\:{ball}\:{is}\:{released}\:{from}\:{a}\:{height}\:{of}\:\boldsymbol{{h}}\: \\ $$$${above}\:{a}\:{long}\:{inclined}\:{plane}\:{as}\:{shown}. \\ $$$${if}\:{the}\:{coefficient}\:{of}\:{restitution}\:{is}\:\boldsymbol{{e}}, \\ $$$${find}\:{the}\:{velocity}\:{of}\:{the}\:{ball}\:{just}\:{after} \\ $$$${the}\:{n}^{{th}} \:{collision}. \\ $$
Commented by mahdipoor last updated on 29/Aug/23
obtained fron the same question as before:   { ((v_i =v_1 e^(i−1) )),((u_i =u_1 −2v_1 (1+e+e^2 +...+e^(i−2) )tanθ)) :}  in this case ⇒ { ((v_1 =e(√(agh))×cosθ)),((u_1 =−(√(2gh))×sinθ)) :}   { ((v_i =(√(2gh)).cosθ×e^i )),((u_i =−(√(2gh)).sinθ(((1+3e−2e^i )/(1−e))))) :}
$${obtained}\:{fron}\:{the}\:{same}\:{question}\:{as}\:{before}: \\ $$$$\begin{cases}{{v}_{{i}} ={v}_{\mathrm{1}} {e}^{{i}−\mathrm{1}} }\\{{u}_{{i}} ={u}_{\mathrm{1}} −\mathrm{2}{v}_{\mathrm{1}} \left(\mathrm{1}+{e}+{e}^{\mathrm{2}} +…+{e}^{{i}−\mathrm{2}} \right){tan}\theta}\end{cases} \\ $$$${in}\:{this}\:{case}\:\Rightarrow\begin{cases}{{v}_{\mathrm{1}} ={e}\sqrt{{agh}}×{cos}\theta}\\{{u}_{\mathrm{1}} =−\sqrt{\mathrm{2}{gh}}×{sin}\theta}\end{cases} \\ $$$$\begin{cases}{{v}_{{i}} =\sqrt{\mathrm{2}{gh}}.{cos}\theta×{e}^{{i}} }\\{{u}_{{i}} =−\sqrt{\mathrm{2}{gh}}.{sin}\theta\left(\frac{\mathrm{1}+\mathrm{3}{e}−\mathrm{2}{e}^{{i}} }{\mathrm{1}−{e}}\right)}\end{cases} \\ $$
Answered by mr W last updated on 30/Aug/23

Leave a Reply

Your email address will not be published. Required fields are marked *