Menu Close

prove-that-the-curve-x-1-2-y-2-x-1-2-y-2-4-is-an-ellipse-and-find-its-semi-major-axis-and-semi-minor-axis-




Question Number 196723 by mr W last updated on 30/Aug/23
prove that the curve   (√((x−1)^2 +y^2 ))+(√((x+1)^2 +y^2 ))=4   is an ellipse and find its semi  major axis and semi minor axis.
provethatthecurve(x1)2+y2+(x+1)2+y2=4isanellipseandfinditssemimajoraxisandsemiminoraxis.
Answered by Frix last updated on 30/Aug/23
Squaring, transforming etc. leads to  (x^2 /4)+(y^2 /3)=1  Testing with y^2 =((12−3x^2 )/4) in the given equation  gives  ∣x+4∣+∣x−4∣=8; true for −4≤x≤4
Squaring,transformingetc.leadstox24+y23=1Testingwithy2=123x24inthegivenequationgivesx+4+x4∣=8;truefor4x4
Commented by mr W last updated on 30/Aug/23
��
Answered by mr W last updated on 30/Aug/23
v=(√((x−1)^2 +y^2 ))  u=(√((x+1)^2 +y^2 ))  u+v=4  u^2 +v^2 =2(x^2 +y^2 +1)  u^2 −v^2 =4x  ⇒u−v=x  ⇒u=((4+x)/2)  ⇒v=((4−x)/2)  u^2 +v^2 =((2(16+x^2 ))/4)=2(x^2 +y^2 +1)  3x^2 +4y^2 =12  ⇒(x^2 /2^2 )+(y^2 /(((√3))^2 ))=1  ⇒ellipse with a=2, b=(√3)
v=(x1)2+y2u=(x+1)2+y2u+v=4u2+v2=2(x2+y2+1)u2v2=4xuv=xu=4+x2v=4x2u2+v2=2(16+x2)4=2(x2+y2+1)3x2+4y2=12x222+y2(3)2=1ellipsewitha=2,b=3

Leave a Reply

Your email address will not be published. Required fields are marked *