Question Number 196758 by sonukgindia last updated on 31/Aug/23
Answered by qaz last updated on 31/Aug/23
$$\mathrm{1}+\left(\mathrm{1}+{x}\right)+\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)+…\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +…+{x}^{{n}−\mathrm{1}} \right) \\ $$$$=\frac{\mathrm{1}−{x}}{\mathrm{1}−{x}}+\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}−{x}}+\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{1}−{x}}+\frac{\mathrm{1}−{x}^{\mathrm{4}} }{\mathrm{1}−{x}}+…\frac{\mathrm{1}−{x}^{{n}−\mathrm{1}} }{\mathrm{1}−{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{x}}\left[{n}−\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…+{x}^{{n}−\mathrm{1}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{x}}\left[{n}−\frac{{x}\left(\mathrm{1}−{x}^{{n}} \right)}{\mathrm{1}−{x}}\right] \\ $$