Menu Close

xe-1-2x-dx-




Question Number 196832 by Frix last updated on 01/Sep/23
∫xe^(1/(2x)) dx=?
$$\int{x}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} {dx}=? \\ $$
Commented by mokys last updated on 02/Sep/23
u = (1/(2x)) → x = (1/(2u)) → dx = − (du/(2u^2 ))     ∫ x e^(1/(2x)) dx = −(1/4)∫ (e^u /u^3 ) du = − (1/4)((1/2) Ei(u) −(e^u /(2u)) − (e^u /(2u^2 ))) + K
$${u}\:=\:\frac{\mathrm{1}}{\mathrm{2}{x}}\:\rightarrow\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}{u}}\:\rightarrow\:{dx}\:=\:−\:\frac{{du}}{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$ \\ $$$$\:\int\:{x}\:{e}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} {dx}\:=\:−\frac{\mathrm{1}}{\mathrm{4}}\int\:\frac{{e}^{{u}} }{{u}^{\mathrm{3}} }\:{du}\:=\:−\:\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}\:{Ei}\left({u}\right)\:−\frac{{e}^{{u}} }{\mathrm{2}{u}}\:−\:\frac{{e}^{{u}} }{\mathrm{2}{u}^{\mathrm{2}} }\right)\:+\:{K}\:\: \\ $$$$ \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *