Menu Close

Let-be-a-positive-Root-of-x-2-2023x-1-Define-a-sequence-i-such-That-0-1-n-1-n-find-The-Remainder-When-2023-is-divided-by-2-




Question Number 196872 by York12 last updated on 02/Sep/23
Let ξ be a positive Root of x^2 −2023x−1  Define a sequence ϕ_i  such That ϕ_0 =1  ϕ_(n+1) =⌊ϕ_n ξ⌋, find The Remainder When ϕ_(2023 ) is divided by (√ϕ_2 )
$${Let}\:\xi\:{be}\:{a}\:{positive}\:{Root}\:{of}\:{x}^{\mathrm{2}} −\mathrm{2023}{x}−\mathrm{1} \\ $$$${Define}\:{a}\:{sequence}\:\varphi_{{i}} \:{such}\:{That}\:\varphi_{\mathrm{0}} =\mathrm{1} \\ $$$$\varphi_{{n}+\mathrm{1}} =\lfloor\varphi_{{n}} \xi\rfloor,\:{find}\:{The}\:{Remainder}\:{When}\:\varphi_{\mathrm{2023}\:} {is}\:{divided}\:{by}\:\sqrt{\varphi_{\mathrm{2}} } \\ $$
Answered by York12 last updated on 02/Sep/23
  x^2 −2023x−1=0 ∧ ξ is a positive root   since the product of Roots =−1  ⇒The other Root =(1/ξ)  ξ−(1/ξ)=2023⇒ξ=2023+(1/ξ)  ⇒ϕ_n =⌊ϕ_(n−1) ξ⌋=⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋  2023ϕ_(n−1) ∈Z^+ ⇒⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋=2023ϕ_(n−1) +⌊(ϕ_(n−1) /(2023))⌋  We have  ϕ_n =⌊ϕ_(n−1) ξ⌋⇔ϕ_n ≤ϕ_(n−1) ξ<ϕ_n +1  ⇒(ϕ_n /ξ)≤ϕ_(n−1) <(ϕ_n /ξ)+(1/(2023+(1/ξ)))     ,∧(1/(2023+(1/ξ)))<1  ⇒⌊(ϕ_n /ξ)⌋∈{ϕ_(n−1) ,ϕ_(n−1) −1}  ⌊(ϕ_n /ξ)⌋=ϕ_(n−1) ⇔(ϕ_n /ξ)=ϕ_(n−1) ,but ϕ_n ,ϕ_(n−1) ∈Z^+ ∧ξ∈Q^′   ⇒(ϕ_n /ξ)∉Z^+ ⇒(ϕ_n /ξ)≠ϕ_(n−1) ⇒⌊(ϕ_n /ξ)⌋=ϕ_(n−1) −1  ⇒ϕ_n =2023ϕ_(n−1) +ϕ_(n−2) −1  ⇒ϕ_2 =2023^2 ⇒(√ϕ_2 )=2023  ⇒(ϕ_n /(2023))=ϕ_(n−1) +((ϕ_(n−2) −1)/(2023))  ⇒ϕ_n ≡ϕ_(n−2) −1 mod(2023)  ⇒ϕ_(2023) ≡ϕ_(2021) −1 mod(2023)≡ϕ_(2019) −1 mod(2023)  ....≡ϕ_1 −1011 mod (2023)≡1012 mod(2023)
$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{2023}{x}−\mathrm{1}=\mathrm{0}\:\wedge\:\xi\:{is}\:{a}\:{positive}\:{root}\: \\ $$$${since}\:{the}\:{product}\:{of}\:{Roots}\:=−\mathrm{1} \\ $$$$\Rightarrow{The}\:{other}\:{Root}\:=\frac{\mathrm{1}}{\xi} \\ $$$$\xi−\frac{\mathrm{1}}{\xi}=\mathrm{2023}\Rightarrow\xi=\mathrm{2023}+\frac{\mathrm{1}}{\xi} \\ $$$$\Rightarrow\varphi_{{n}} =\lfloor\varphi_{{n}−\mathrm{1}} \xi\rfloor=\lfloor\varphi_{{n}−\mathrm{1}} ×\mathrm{2023}+\varphi_{{n}−\mathrm{1}} ×\frac{\mathrm{1}}{\xi}\rfloor \\ $$$$\mathrm{2023}\varphi_{{n}−\mathrm{1}} \in\mathbb{Z}^{+} \Rightarrow\lfloor\varphi_{{n}−\mathrm{1}} ×\mathrm{2023}+\varphi_{{n}−\mathrm{1}} ×\frac{\mathrm{1}}{\xi}\rfloor=\mathrm{2023}\varphi_{{n}−\mathrm{1}} +\lfloor\frac{\varphi_{{n}−\mathrm{1}} }{\mathrm{2023}}\rfloor \\ $$$${We}\:{have} \\ $$$$\varphi_{{n}} =\lfloor\varphi_{{n}−\mathrm{1}} \xi\rfloor\Leftrightarrow\varphi_{{n}} \leqslant\varphi_{{n}−\mathrm{1}} \xi<\varphi_{{n}} +\mathrm{1} \\ $$$$\Rightarrow\frac{\varphi_{{n}} }{\xi}\leqslant\varphi_{{n}−\mathrm{1}} <\frac{\varphi_{{n}} }{\xi}+\frac{\mathrm{1}}{\mathrm{2023}+\frac{\mathrm{1}}{\xi}}\:\:\:\:\:,\wedge\frac{\mathrm{1}}{\mathrm{2023}+\frac{\mathrm{1}}{\xi}}<\mathrm{1} \\ $$$$\Rightarrow\lfloor\frac{\varphi_{{n}} }{\xi}\rfloor\in\left\{\varphi_{{n}−\mathrm{1}} ,\varphi_{{n}−\mathrm{1}} −\mathrm{1}\right\} \\ $$$$\lfloor\frac{\varphi_{{n}} }{\xi}\rfloor=\varphi_{{n}−\mathrm{1}} \Leftrightarrow\frac{\varphi_{{n}} }{\xi}=\varphi_{{n}−\mathrm{1}} ,{but}\:\varphi_{{n}} ,\varphi_{{n}−\mathrm{1}} \in\mathbb{Z}^{+} \wedge\xi\in\mathbb{Q}^{'} \\ $$$$\Rightarrow\frac{\varphi_{{n}} }{\xi}\notin\mathbb{Z}^{+} \Rightarrow\frac{\varphi_{{n}} }{\xi}\neq\varphi_{{n}−\mathrm{1}} \Rightarrow\lfloor\frac{\varphi_{{n}} }{\xi}\rfloor=\varphi_{{n}−\mathrm{1}} −\mathrm{1} \\ $$$$\Rightarrow\varphi_{{n}} =\mathrm{2023}\varphi_{{n}−\mathrm{1}} +\varphi_{{n}−\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\varphi_{\mathrm{2}} =\mathrm{2023}^{\mathrm{2}} \Rightarrow\sqrt{\varphi_{\mathrm{2}} }=\mathrm{2023} \\ $$$$\Rightarrow\frac{\varphi_{{n}} }{\mathrm{2023}}=\varphi_{{n}−\mathrm{1}} +\frac{\varphi_{{n}−\mathrm{2}} −\mathrm{1}}{\mathrm{2023}} \\ $$$$\Rightarrow\varphi_{{n}} \equiv\varphi_{{n}−\mathrm{2}} −\mathrm{1}\:{mod}\left(\mathrm{2023}\right) \\ $$$$\Rightarrow\varphi_{\mathrm{2023}} \equiv\varphi_{\mathrm{2021}} −\mathrm{1}\:{mod}\left(\mathrm{2023}\right)\equiv\varphi_{\mathrm{2019}} −\mathrm{1}\:{mod}\left(\mathrm{2023}\right) \\ $$$$….\equiv\varphi_{\mathrm{1}} −\mathrm{1011}\:{mod}\:\left(\mathrm{2023}\right)\equiv\mathrm{1012}\:{mod}\left(\mathrm{2023}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *