Menu Close

Let-be-a-positive-Root-of-x-2-2023x-1-Define-a-sequence-i-such-That-0-1-n-1-n-find-The-Remainder-When-2023-is-divided-by-2-




Question Number 196872 by York12 last updated on 02/Sep/23
Let ξ be a positive Root of x^2 −2023x−1  Define a sequence ϕ_i  such That ϕ_0 =1  ϕ_(n+1) =⌊ϕ_n ξ⌋, find The Remainder When ϕ_(2023 ) is divided by (√ϕ_2 )
LetξbeapositiveRootofx22023x1DefineasequenceφisuchThatφ0=1φn+1=φnξ,findTheRemainderWhenφ2023isdividedbyφ2
Answered by York12 last updated on 02/Sep/23
  x^2 −2023x−1=0 ∧ ξ is a positive root   since the product of Roots =−1  ⇒The other Root =(1/ξ)  ξ−(1/ξ)=2023⇒ξ=2023+(1/ξ)  ⇒ϕ_n =⌊ϕ_(n−1) ξ⌋=⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋  2023ϕ_(n−1) ∈Z^+ ⇒⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋=2023ϕ_(n−1) +⌊(ϕ_(n−1) /(2023))⌋  We have  ϕ_n =⌊ϕ_(n−1) ξ⌋⇔ϕ_n ≤ϕ_(n−1) ξ<ϕ_n +1  ⇒(ϕ_n /ξ)≤ϕ_(n−1) <(ϕ_n /ξ)+(1/(2023+(1/ξ)))     ,∧(1/(2023+(1/ξ)))<1  ⇒⌊(ϕ_n /ξ)⌋∈{ϕ_(n−1) ,ϕ_(n−1) −1}  ⌊(ϕ_n /ξ)⌋=ϕ_(n−1) ⇔(ϕ_n /ξ)=ϕ_(n−1) ,but ϕ_n ,ϕ_(n−1) ∈Z^+ ∧ξ∈Q^′   ⇒(ϕ_n /ξ)∉Z^+ ⇒(ϕ_n /ξ)≠ϕ_(n−1) ⇒⌊(ϕ_n /ξ)⌋=ϕ_(n−1) −1  ⇒ϕ_n =2023ϕ_(n−1) +ϕ_(n−2) −1  ⇒ϕ_2 =2023^2 ⇒(√ϕ_2 )=2023  ⇒(ϕ_n /(2023))=ϕ_(n−1) +((ϕ_(n−2) −1)/(2023))  ⇒ϕ_n ≡ϕ_(n−2) −1 mod(2023)  ⇒ϕ_(2023) ≡ϕ_(2021) −1 mod(2023)≡ϕ_(2019) −1 mod(2023)  ....≡ϕ_1 −1011 mod (2023)≡1012 mod(2023)
x22023x1=0ξisapositiverootsincetheproductofRoots=1TheotherRoot=1ξξ1ξ=2023ξ=2023+1ξφn=φn1ξ=φn1×2023+φn1×1ξ2023φn1Z+φn1×2023+φn1×1ξ=2023φn1+φn12023Wehaveφn=φn1ξφnφn1ξ<φn+1φnξφn1<φnξ+12023+1ξ,12023+1ξ<1φnξ{φn1,φn11}φnξ=φn1φnξ=φn1,butφn,φn1Z+ξQφnξZ+φnξφn1φnξ=φn11φn=2023φn1+φn21φ2=20232φ2=2023φn2023=φn1+φn212023φnφn21mod(2023)φ2023φ20211mod(2023)φ20191mod(2023).φ11011mod(2023)1012mod(2023)

Leave a Reply

Your email address will not be published. Required fields are marked *