Menu Close

Question-196885




Question Number 196885 by hardmath last updated on 02/Sep/23
Answered by MM42 last updated on 02/Sep/23
2cosx=(√(2+2cos2x))=(√(2+(√(2+cos4x))))  =(√(2+(√(2+(√(2+cos8x))))))=....=(√(2+(√(2+(√(2+...))))))  let  x=0⇒(√(2+(√(2+(√(2+...))))))=2 ✓
$$\mathrm{2}{cosx}=\sqrt{\mathrm{2}+\mathrm{2}{cos}\mathrm{2}{x}}=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+{cos}\mathrm{4}{x}}} \\ $$$$=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+{cos}\mathrm{8}{x}}}}=….=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+…}}} \\ $$$${let}\:\:{x}=\mathrm{0}\Rightarrow\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+…}}}=\mathrm{2}\:\checkmark \\ $$$$ \\ $$
Commented by hardmath last updated on 02/Sep/23
cool thank you professor
$$\mathrm{cool}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{professor} \\ $$
Commented by hardmath last updated on 03/Sep/23
Sorry professor, but equalities are satisfied  only if  cos((2^n )x)≥0  ∀n≥0  so  (- (π/2))^(n+1) ≤ x ≤ ((π/2))^(n+1)   ∀n≥0  ⇒ x = 0  Therefore  2cos(0) = ? ⇒ 2 = ?
$$\mathrm{Sorry}\:\mathrm{professor},\:\mathrm{but}\:\mathrm{equalities}\:\mathrm{are}\:\mathrm{satisfied} \\ $$$$\mathrm{only}\:\mathrm{if}\:\:\mathrm{cos}\left(\left(\mathrm{2}^{\mathrm{n}} \right)\mathrm{x}\right)\geqslant\mathrm{0}\:\:\forall\mathrm{n}\geqslant\mathrm{0}\:\:\mathrm{so}\:\:\left(-\:\frac{\pi}{\mathrm{2}}\right)^{\mathrm{n}+\mathrm{1}} \leqslant\:\mathrm{x}\:\leqslant\:\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{n}+\mathrm{1}} \:\:\forall\mathrm{n}\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:\mathrm{0} \\ $$$$\mathrm{Therefore}\:\:\mathrm{2cos}\left(\mathrm{0}\right)\:=\:?\:\Rightarrow\:\mathrm{2}\:=\:? \\ $$
Answered by Mathspace last updated on 02/Sep/23
x=(√(2+(√(2+(√2)+(√(...))))))  ⇒x^2 =2+x ⇒x^2 −x−2=0  Δ=1+8=9 ⇒  x_1 =((1+(√9))/2)  =2  x_2 =((1−(√9))/2)=−1  but x>0 ⇒x=2
$${x}=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}+\sqrt{…}}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\mathrm{2}+{x}\:\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0} \\ $$$$\Delta=\mathrm{1}+\mathrm{8}=\mathrm{9}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{9}}}{\mathrm{2}}\:\:=\mathrm{2} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{9}}}{\mathrm{2}}=−\mathrm{1} \\ $$$${but}\:{x}>\mathrm{0}\:\Rightarrow{x}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *