Menu Close

Question-196893




Question Number 196893 by hardmath last updated on 02/Sep/23
Answered by Rasheed.Sindhi last updated on 02/Sep/23
x=(√((−1+i)+(√((−1+i)+(√(...))))))   x=(√((−1+i)+x))   x^2 = (−1+i)+x  x^2 −x+1−i=0  x=((1±(√(1−4(1−i))))/2)  x=((1±(√(−3+4i)))/2)      =((1±(1+2i))/2)      =((2+2i)/2) , ((−2i)/2)       =1+i , −i
$${x}=\sqrt{\left(−\mathrm{1}+{i}\right)+\sqrt{\left(−\mathrm{1}+{i}\right)+\sqrt{…}}}\: \\ $$$${x}=\sqrt{\left(−\mathrm{1}+{i}\right)+{x}}\: \\ $$$${x}^{\mathrm{2}} =\:\left(−\mathrm{1}+{i}\right)+{x} \\ $$$${x}^{\mathrm{2}} −{x}+\mathrm{1}−{i}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}\left(\mathrm{1}−{i}\right)}}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{−\mathrm{3}+\mathrm{4}{i}}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}\pm\left(\mathrm{1}+\mathrm{2}{i}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{2}+\mathrm{2}{i}}{\mathrm{2}}\:,\:\frac{−\mathrm{2}{i}}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\mathrm{1}+{i}\:,\:−{i} \\ $$
Commented by BaliramKumar last updated on 02/Sep/23
(√(−3 + 4i )) = 1 + 2i
$$\sqrt{−\mathrm{3}\:+\:\mathrm{4}{i}\:}\:=\:\mathrm{1}\:+\:\mathrm{2}{i} \\ $$
Commented by Rasheed.Sindhi last updated on 02/Sep/23
ThanX!  Going to edit my answer.
$$\mathcal{T}{han}\mathcal{X}!\:\:{Going}\:{to}\:{edit}\:{my}\:{answer}. \\ $$
Commented by hardmath last updated on 05/Sep/23
thank you so much professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *