Menu Close

soit-r-n-1-r-n-2-r-n-2-r-0-1-demontrer-sans-recurrence-que-r-n-gt-0-demontrer-par-recurrence-que-r-n-1-1-2-r-n-demontrer-sans-recurrence-que-r-n-1-2-n-erly-rolvinst-




Question Number 196913 by ERLY last updated on 02/Sep/23
soit {_(r_(n+1) =r_n /(2+r_n ^2 )) ^(r_0 =1)   demontrer sans recurrence que r_n >0  demontrer par recurrence que r_(n+1) ≤(1/2)r_n   demontrer sans recurrence que r_n ≤((1/2))^n   •erly rolvinst•
$${soit}\:\left\{_{{r}_{{n}+\mathrm{1}} ={r}_{{n}} /\left(\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} \right)} ^{{r}_{\mathrm{0}} =\mathrm{1}} \right. \\ $$$${demontrer}\:{sans}\:{recurrence}\:{que}\:{r}_{{n}} >\mathrm{0} \\ $$$${demontrer}\:{par}\:{recurrence}\:{que}\:{r}_{{n}+\mathrm{1}} \leq\frac{\mathrm{1}}{\mathrm{2}}{r}_{{n}} \\ $$$${demontrer}\:{sans}\:{recurrence}\:{que}\:{r}_{{n}} \leq\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\bullet{erly}\:{rolvinst}\bullet \\ $$
Answered by aleks041103 last updated on 03/Oct/23
1.  by induction  r_0 =1>0  let r_k >0, for some k∈N  r_(k+1) =(r_k /(2+r_k ^2 ))>0  ⇒r_n >0  2.  2+r_n ^2 ≥2⇒(1/2)≥(1/(2+r_n ^2 ))  r_n >0⇒(r_n /2)≥(r_n /(2+r_n ^2 ))=r_(n+1)   ⇒r_(n+1) ≤(1/2)r_n  → geometric progression  3.  ⇒r_n ≤((1/2))^n r_0 =((1/2))^n     4.  0<r_n ≤((1/2))^n   ⇒lim_(n→∞)  0 ≤lim_(n→∞)  r_n ≤lim_(n→∞) ((1/2))^n   ⇒lim_(n→∞)  r_n =0
$$\mathrm{1}. \\ $$$${by}\:{induction} \\ $$$${r}_{\mathrm{0}} =\mathrm{1}>\mathrm{0} \\ $$$${let}\:{r}_{{k}} >\mathrm{0},\:{for}\:{some}\:{k}\in\mathbb{N} \\ $$$${r}_{{k}+\mathrm{1}} =\frac{{r}_{{k}} }{\mathrm{2}+{r}_{{k}} ^{\mathrm{2}} }>\mathrm{0} \\ $$$$\Rightarrow{r}_{{n}} >\mathrm{0} \\ $$$$\mathrm{2}. \\ $$$$\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} \geqslant\mathrm{2}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\geqslant\frac{\mathrm{1}}{\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} } \\ $$$${r}_{{n}} >\mathrm{0}\Rightarrow\frac{{r}_{{n}} }{\mathrm{2}}\geqslant\frac{{r}_{{n}} }{\mathrm{2}+{r}_{{n}} ^{\mathrm{2}} }={r}_{{n}+\mathrm{1}} \\ $$$$\Rightarrow{r}_{{n}+\mathrm{1}} \leqslant\frac{\mathrm{1}}{\mathrm{2}}{r}_{{n}} \:\rightarrow\:{geometric}\:{progression} \\ $$$$\mathrm{3}. \\ $$$$\Rightarrow{r}_{{n}} \leqslant\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} {r}_{\mathrm{0}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$ \\ $$$$\mathrm{4}. \\ $$$$\mathrm{0}<{r}_{{n}} \leqslant\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\:\mathrm{0}\:\leqslant\underset{{n}\rightarrow\infty} {{lim}}\:{r}_{{n}} \leqslant\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\:{r}_{{n}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *