Menu Close

soit-r-n-1-r-n-2-r-n-2-r-0-1-demontrer-sans-recurrence-que-r-n-gt-0-demontrer-par-recurrence-que-r-n-1-1-2-r-n-demontrer-sans-recurrence-que-r-n-1-2-n-erly-rolvinst-




Question Number 196913 by ERLY last updated on 02/Sep/23
soit {_(r_(n+1) =r_n /(2+r_n ^2 )) ^(r_0 =1)   demontrer sans recurrence que r_n >0  demontrer par recurrence que r_(n+1) ≤(1/2)r_n   demontrer sans recurrence que r_n ≤((1/2))^n   •erly rolvinst•
soit{rn+1=rn/(2+rn2)r0=1demontrersansrecurrencequern>0demontrerparrecurrencequern+112rndemontrersansrecurrencequern(12)nerlyrolvinst
Answered by aleks041103 last updated on 03/Oct/23
1.  by induction  r_0 =1>0  let r_k >0, for some k∈N  r_(k+1) =(r_k /(2+r_k ^2 ))>0  ⇒r_n >0  2.  2+r_n ^2 ≥2⇒(1/2)≥(1/(2+r_n ^2 ))  r_n >0⇒(r_n /2)≥(r_n /(2+r_n ^2 ))=r_(n+1)   ⇒r_(n+1) ≤(1/2)r_n  → geometric progression  3.  ⇒r_n ≤((1/2))^n r_0 =((1/2))^n     4.  0<r_n ≤((1/2))^n   ⇒lim_(n→∞)  0 ≤lim_(n→∞)  r_n ≤lim_(n→∞) ((1/2))^n   ⇒lim_(n→∞)  r_n =0
1.byinductionr0=1>0letrk>0,forsomekNrk+1=rk2+rk2>0rn>02.2+rn221212+rn2rn>0rn2rn2+rn2=rn+1rn+112rngeometricprogression3.rn(12)nr0=(12)n4.0<rn(12)nlimn0limnrnlimn(12)nlimnrn=0

Leave a Reply

Your email address will not be published. Required fields are marked *