Prove-that-pi-2-0-ln-1-sint-sint-dt-pi-2-8-1-2-arccos-2- Tinku Tara September 4, 2023 Set Theory 0 Comments FacebookTweetPin Question Number 196950 by Erico last updated on 05/Sep/23 Provethat∫0π2ln(1+αsint)sintdt=π28−12(arccosα)2 Answered by Mathspace last updated on 06/Sep/23 f(x)=∫0π2ln(1+xsint)sintdtf′(x)=∫0π2dt1+xsint(tan(x2)=y)=∫012dy(1+y2)(1+x2y1+y2)=∫012dy1+y2+2xy=∫012dyy2+2xy+x2+1−x2=∫012dy(y+x)2+1−x2dy(y+x=1−x2z)=∫x1−x21+x1−x21−x2dz(1−x2)(1+z2)=21−x2(arctan(1+x1−x2)−arctan(x1−x2)}wehavetan(arctana−arctanb)=a−b1+ab⇒arctan(1+x1−x2)−arctan(x1−x2)=arctan(1+x−x1−x2)=π2−arctan(1−x2)⇒f′(x)=21−x2(π2−arctan1−x2)=π1−x2−2arctan(1−x2)1−x2⇒f(x)=πarctanx−2∫.xarctan(1−u2)1−u2du+ctesttofind∫.xarctan1−u21−u2du…becontinued… Commented by Mathspace last updated on 07/Sep/23 sorryf(x)=πarcsinx−2∫xarctan1−u21−u2du+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-196946Next Next post: Question-196938 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.