Menu Close

Prove-that-pi-2-0-ln-1-sint-sint-dt-pi-2-8-1-2-arccos-2-




Question Number 196950 by Erico last updated on 05/Sep/23
Prove that ∫^( (π/2)) _( 0) ((ln(1+αsint))/(sint))dt= (π^2 /8)−(1/2)(arccosα)^2
Provethat0π2ln(1+αsint)sintdt=π2812(arccosα)2
Answered by Mathspace last updated on 06/Sep/23
f(x)=∫_0 ^(π/2) ((ln(1+xsint))/(sint))dt  f^′ (x)=∫_0 ^(π/2) (dt/(1+xsint)) (tan((x/2))=y)  =∫_0 ^1 ((2dy)/((1+y^2 )(1+x((2y)/(1+y^2 )))))  =∫_0 ^1 ((2dy)/(1+y^2 +2xy))=∫_0 ^1 ((2dy)/(y^2 +2xy+x^2 +1−x^2 ))  =∫_0 ^1 ((2dy)/((y+x)^2 +1−x^2 ))dy( y+x=(√(1−x^2 ))z)  =∫_(x/( (√(1−x^2 )))) ^((1+x)/( (√(1−x^2 ))))    (((√(1−x^2 ))dz)/((1−x^2 )(1+z^2 )))  =(2/( (√(1−x^2 )))) (arctan(((1+x)/( (√(1−x^2 )))))−arctan((x/( (√(1−x^2 )))))}  we have  tan( arctana−arctanb)  =((a−b)/(1+ab)) ⇒  arctan(((1+x)/( (√(1−x^2 )))))−arctan((x/( (√(1−x^2 )))))  =arctan(((1+x−x)/( (√(1−x^2 )))))  =(π/2)−arctan((√(1−x^2 ))) ⇒  f^′ (x)=(2/( (√(1−x^2 ))))((π/2)−arctan(√(1−x^2 )))  =(π/( (√(1−x^2 ))))−((2arctan((√(1−x^2 ))))/( (√(1−x^2 ))))  ⇒f(x)=πarctanx  −2∫_. ^x ((arctan((√(1−u^2 ))))/( (√(1−u^2 ))))du +c  test to find  ∫_. ^x ((arctan(√(1−u^2 )))/( (√(1−u^2 ))))du  ...be continued...
f(x)=0π2ln(1+xsint)sintdtf(x)=0π2dt1+xsint(tan(x2)=y)=012dy(1+y2)(1+x2y1+y2)=012dy1+y2+2xy=012dyy2+2xy+x2+1x2=012dy(y+x)2+1x2dy(y+x=1x2z)=x1x21+x1x21x2dz(1x2)(1+z2)=21x2(arctan(1+x1x2)arctan(x1x2)}wehavetan(arctanaarctanb)=ab1+abarctan(1+x1x2)arctan(x1x2)=arctan(1+xx1x2)=π2arctan(1x2)f(x)=21x2(π2arctan1x2)=π1x22arctan(1x2)1x2f(x)=πarctanx2.xarctan(1u2)1u2du+ctesttofind.xarctan1u21u2dubecontinued
Commented by Mathspace last updated on 07/Sep/23
sorry f(x)=π arcsinx  −2∫^x ((arctan(√(1−u^2 )))/( (√(1−u^2 ))))du +c
sorryf(x)=πarcsinx2xarctan1u21u2du+c

Leave a Reply

Your email address will not be published. Required fields are marked *