Menu Close

Prove-that-pi-2-0-ln-1-sint-sint-dt-pi-2-8-1-2-arccos-2-




Question Number 196950 by Erico last updated on 05/Sep/23
Prove that ∫^( (π/2)) _( 0) ((ln(1+αsint))/(sint))dt= (π^2 /8)−(1/2)(arccosα)^2
$$\mathrm{Prove}\:\mathrm{that}\:\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{1}+\alpha\mathrm{sin}{t}\right)}{\mathrm{sin}{t}}{dt}=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{arccos}\alpha\right)^{\mathrm{2}} \\ $$
Answered by Mathspace last updated on 06/Sep/23
f(x)=∫_0 ^(π/2) ((ln(1+xsint))/(sint))dt  f^′ (x)=∫_0 ^(π/2) (dt/(1+xsint)) (tan((x/2))=y)  =∫_0 ^1 ((2dy)/((1+y^2 )(1+x((2y)/(1+y^2 )))))  =∫_0 ^1 ((2dy)/(1+y^2 +2xy))=∫_0 ^1 ((2dy)/(y^2 +2xy+x^2 +1−x^2 ))  =∫_0 ^1 ((2dy)/((y+x)^2 +1−x^2 ))dy( y+x=(√(1−x^2 ))z)  =∫_(x/( (√(1−x^2 )))) ^((1+x)/( (√(1−x^2 ))))    (((√(1−x^2 ))dz)/((1−x^2 )(1+z^2 )))  =(2/( (√(1−x^2 )))) (arctan(((1+x)/( (√(1−x^2 )))))−arctan((x/( (√(1−x^2 )))))}  we have  tan( arctana−arctanb)  =((a−b)/(1+ab)) ⇒  arctan(((1+x)/( (√(1−x^2 )))))−arctan((x/( (√(1−x^2 )))))  =arctan(((1+x−x)/( (√(1−x^2 )))))  =(π/2)−arctan((√(1−x^2 ))) ⇒  f^′ (x)=(2/( (√(1−x^2 ))))((π/2)−arctan(√(1−x^2 )))  =(π/( (√(1−x^2 ))))−((2arctan((√(1−x^2 ))))/( (√(1−x^2 ))))  ⇒f(x)=πarctanx  −2∫_. ^x ((arctan((√(1−u^2 ))))/( (√(1−u^2 ))))du +c  test to find  ∫_. ^x ((arctan(√(1−u^2 )))/( (√(1−u^2 ))))du  ...be continued...
$${f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+{xsint}\right)}{{sint}}{dt} \\ $$$${f}^{'} \left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dt}}{\mathrm{1}+{xsint}}\:\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)={y}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{dy}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}\frac{\mathrm{2}{y}}{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{dy}}{\mathrm{1}+{y}^{\mathrm{2}} +\mathrm{2}{xy}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{dy}}{{y}^{\mathrm{2}} +\mathrm{2}{xy}+{x}^{\mathrm{2}} +\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{dy}}{\left({y}+{x}\right)^{\mathrm{2}} +\mathrm{1}−{x}^{\mathrm{2}} }{dy}\left(\:{y}+{x}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{z}\right) \\ $$$$=\int_{\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} ^{\frac{\mathrm{1}+{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} \:\:\:\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dz}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\left({arctan}\left(\frac{\mathrm{1}+{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)−{arctan}\left(\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)\right\} \\ $$$${we}\:{have} \\ $$$${tan}\left(\:{arctana}−{arctanb}\right) \\ $$$$=\frac{{a}−{b}}{\mathrm{1}+{ab}}\:\Rightarrow \\ $$$${arctan}\left(\frac{\mathrm{1}+{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)−{arctan}\left(\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right) \\ $$$$={arctan}\left(\frac{\mathrm{1}+{x}−{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}−{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left(\frac{\pi}{\mathrm{2}}−{arctan}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right) \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\frac{\mathrm{2}{arctan}\left(\sqrt{\left.\mathrm{1}−{x}^{\mathrm{2}} \right)}\right.}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow{f}\left({x}\right)=\pi{arctanx} \\ $$$$−\mathrm{2}\int_{.} ^{{x}} \frac{{arctan}\left(\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}{du}\:+{c} \\ $$$${test}\:{to}\:{find} \\ $$$$\int_{.} ^{{x}} \frac{{arctan}\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}{du} \\ $$$$…{be}\:{continued}… \\ $$
Commented by Mathspace last updated on 07/Sep/23
sorry f(x)=π arcsinx  −2∫^x ((arctan(√(1−u^2 )))/( (√(1−u^2 ))))du +c
$${sorry}\:{f}\left({x}\right)=\pi\:{arcsinx} \\ $$$$−\mathrm{2}\int^{{x}} \frac{{arctan}\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}{du}\:+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *