Menu Close

Prove-that-lim-n-n-1-0-e-nt-1-ln-1-t-dt-2pi-




Question Number 196986 by Erico last updated on 05/Sep/23
Prove that   lim_(n→+∞) n∫^( 1) _( 0) e^(−nt(1−ln(1−t))) dt=(√(2π))
Provethatlimnn+01ent(1ln(1t))dt=2π
Answered by witcher3 last updated on 07/Sep/23
1−ln(1−t)>1  ⇒−nt(1−ln(1−t)<−nt  ⇔ne^(−nt(1−ln(1−t))) <ne^(−nt)   ∫_0 ^1 ne^(−nt(1−ln(1−t))) <∫_0 ^1 ne^(−nt) <∫_0 ^∞ e^(−t) =1  ⇒lim_(n→∞) n∫_0 ^1 e^(−nt(1−ln(1−t))) dt≤1<(√(2π))  impossibl =(√(2π))
1ln(1t)>1nt(1ln(1t)<ntnent(1ln(1t))<nent01nent(1ln(1t))<01nent<0et=1limnn01ent(1ln(1t))dt1<2πimpossibl=2π

Leave a Reply

Your email address will not be published. Required fields are marked *