Question Number 196971 by dimentri last updated on 05/Sep/23
$$\:\:{solve}\:\begin{cases}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{9}{y}=\mathrm{1}}\\{\mathrm{3}{y}^{\mathrm{2}} −\mathrm{9}{x}=\mathrm{0}}\end{cases} \\ $$
Answered by Frix last updated on 05/Sep/23
$${y}=\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{9}} \\ $$$${x}^{\mathrm{4}} −\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}}−\mathrm{27}{x}+\frac{\mathrm{1}}{\mathrm{9}}=\mathrm{0} \\ $$$$\mathrm{No}\:\mathrm{nice}\:\mathrm{solution} \\ $$$${x}\approx.\mathrm{00411480}\wedge{y}\approx−.\mathrm{111105} \\ $$$${x}\approx\mathrm{3}.\mathrm{07275}\wedge{y}\approx\mathrm{3}.\mathrm{03616} \\ $$$${x}\approx−\mathrm{1}.\mathrm{53843}\pm\mathrm{2}.\mathrm{53397i}\wedge{y}\approx−\mathrm{1}.\mathrm{46253}\mp\mathrm{2}.\mathrm{59890i} \\ $$
Answered by a.lgnaoui last updated on 05/Sep/23
$$\begin{cases}{\mathrm{x}^{\mathrm{3}} +\mathrm{3yx}\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:\:\:\left(\mathrm{1}\right)}\\{\mathrm{y}^{\mathrm{3}} −\mathrm{3xy}\:=\:\mathrm{0}\:\:\:\:\:\:\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\Rightarrow\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\Rightarrow\:\:\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\:\:\mathrm{y}=^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{x}^{\mathrm{3}} }\:\:\:\: \\ $$$$\mathrm{dans}\:\:\mathrm{l}\:'\mathrm{equation}\:\:\mathrm{donne}\:\:\mathrm{x}=\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\mathrm{alors}\:\:\mathrm{y}=^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{y}^{\mathrm{6}} }{\mathrm{27}}}\:\:\:\:\:\mathrm{y}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{y}^{\mathrm{6}} }{\mathrm{27}} \\ $$$$\mathrm{posons}\:\:\:\mathrm{y}^{\mathrm{3}} =\boldsymbol{\mathrm{Y}} \\ $$$$\:\:\:\frac{\boldsymbol{\mathrm{Y}}^{\mathrm{2}} }{\mathrm{27}}+\boldsymbol{\mathrm{Y}}−\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0}\:\:\:\Rightarrow\boldsymbol{\mathrm{Y}}^{\mathrm{2}} +\mathrm{27}\boldsymbol{\mathrm{Y}}−\mathrm{9}=\mathrm{0} \\ $$$$\:\:\:\:\begin{cases}{\boldsymbol{\mathrm{Y}}=\frac{−\mathrm{27}−\sqrt{\mathrm{27}^{\mathrm{2}} +\mathrm{36}}}{\mathrm{2}}=\frac{−\mathrm{27}−\mathrm{3}\sqrt{\mathrm{85}}}{\mathrm{2}}}\\{\boldsymbol{\mathrm{Y}}=\frac{−\mathrm{27}+\sqrt{\mathrm{27}^{\mathrm{2}} +\mathrm{36}}}{\mathrm{2}}=\frac{−\mathrm{27}+\mathrm{3}\sqrt{\mathrm{85}}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{soit}\:\:\:\:\:\mathrm{y}=\begin{cases}{−^{\mathrm{3}} \sqrt{\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{9}+\sqrt{\mathrm{85}}\:\right)}}\\{−^{\mathrm{3}} \sqrt{\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{9}−\sqrt{\mathrm{85}}\:\right)}}\end{cases} \\ $$$$\mathrm{x}=\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{3}}\:\:\:\:=\begin{cases}{\:^{\mathrm{3}} \sqrt{\frac{\left(\mathrm{9}+\sqrt{\mathrm{85}}\:\right)^{\mathrm{2}} }{\mathrm{12}}}}\\{\:^{\mathrm{3}} \sqrt{\frac{\left(\mathrm{9}−\sqrt{\mathrm{85}}\:\right)^{\mathrm{2}} }{\mathrm{12}}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{S}}=\:\left\{\:\left(\:^{\mathrm{3}} \sqrt{\frac{\left(\mathrm{9}+\sqrt{\mathrm{85}}\:\right)^{\mathrm{2}} }{\mathrm{12}}}\:;−^{\mathrm{3}} \sqrt{\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{9}+\sqrt{\mathrm{85}}\:\right)}\:\right);\right. \\ $$$$\left.\left(^{\mathrm{3}} \sqrt{\frac{\left(\mathrm{9}−\sqrt{\mathrm{85}}\:\right)^{\mathrm{2}} }{\mathrm{12}}}\:\:;−^{\mathrm{3}} \sqrt{\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{9}−\sqrt{\mathrm{85}}\:\right)}\:\right)\right\} \\ $$$$ \\ $$$$ \\ $$
Commented by Frix last updated on 05/Sep/23
$$\begin{cases}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{9}{y}=\mathrm{1}}\\{\mathrm{3}{y}^{\mathrm{2}} −\mathrm{9}{x}=\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{{x}^{\mathrm{2}} −\mathrm{3}{y}=\frac{\mathrm{1}}{\mathrm{3}}}\\{{y}^{\mathrm{2}} −\mathrm{3}{x}=\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{xy}=\frac{{x}}{\mathrm{3}}\:\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{did}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{equation}}?}\\{{y}^{\mathrm{3}} −\mathrm{3}{xy}=\mathrm{0}}\end{cases} \\ $$
Commented by a.lgnaoui last updated on 05/Sep/23
$$\mathrm{3y}^{\mathrm{2}} −\mathrm{9x}=\mathrm{0}\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{x}=\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{3}} \\ $$
Commented by a.lgnaoui last updated on 05/Sep/23
$$\left(\mathrm{1}\right)×\mathrm{x} \\ $$$$\left(\mathrm{2}\right)×\mathrm{y}\:\:\:\:\:\:\Rightarrow\mathrm{systme}…..\left(\mathrm{1}\right)\mathrm{x}+\left(\mathrm{2}\right)\mathrm{y} \\ $$
Commented by Frix last updated on 05/Sep/23
$$\mathrm{But}\:\begin{cases}{\mathrm{x}^{\mathrm{3}} +\mathrm{3yx}\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:\:\:\left(\mathrm{1}\right)}\\{\mathrm{y}^{\mathrm{3}} −\mathrm{3xy}\:=\:\mathrm{0}\:\:\:\:\:\:\:\left(\mathrm{2}\right)}\end{cases}\:\mathrm{is}\:\mathrm{wrong} \\ $$
Commented by a.lgnaoui last updated on 05/Sep/23
$$\mathrm{exactly}\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{help} \\ $$