Menu Close

calculate-0-pi-2-sin-x-1-sin-x-cos-x-dx-




Question Number 197024 by mnjuly1970 last updated on 06/Sep/23
        calculate   Ω= ∫_0 ^( (π/2)) sin(x) (√( 1+^  sin(x)cos(x))) dx=?
calculateΩ=0π2sin(x)1+sin(x)cos(x)dx=?
Answered by Frix last updated on 06/Sep/23
∫sin x (√(1+sin x cos x)) dx =^(t=x−(π/4))   =∫(((cos t +sin t)(√(1+2cos^2  t)))/2)dt =^(u=tan  t)   =∫(((u+1)(√(u^2 +3)))/(2(u^2 +1)^2 ))du =^(v=((u+(√(u^2 +3)))/( (√3))))   =∫(((√3)((√3)v−1)((√3)v+3)(v^2 +1)^2 )/((3v^4 −2v^2 +3)^2 ))dv =_(Method) ^(Ostrogradski′s)   =−(((√3)v^3 −v^2 +(√3)v+3)/(2(3v^4 −2v^2 +3)))+∫(((√3)v^2 +6v−(√3))/(2(3v^4 −2v^2 +3)))dv=  =−(((√3)v^3 −v^2 +(√3)v+3)/(2(3v^4 −2v^2 +3)))+((√2)/(16))ln ((3v^2 −2(√6)v+3)/(3v^2 +2(√6)v+3))+((3(√2))/8)(tan^(−1)  ((√3)v−(√2)) −tan^(−1)  ((√3)v+(√2)))  x∈[0, (π/2)] ⇒ v∈[((√3)/3), (√3)]  ⇒  Ω=((3(√2)π)/(16))+(1/2)−((3(√2))/8)tan^(−1)  ((√2)/4) ≈1.15281482
sinx1+sinxcosxdx=t=xπ4=(cost+sint)1+2cos2t2dt=u=tant=(u+1)u2+32(u2+1)2du=v=u+u2+33=3(3v1)(3v+3)(v2+1)2(3v42v2+3)2dv=OstrogradskisMethod=3v3v2+3v+32(3v42v2+3)+3v2+6v32(3v42v2+3)dv==3v3v2+3v+32(3v42v2+3)+216ln3v226v+33v2+26v+3+328(tan1(3v2)tan1(3v+2))x[0,π2]v[33,3]Ω=32π16+12328tan1241.15281482
Commented by mnjuly1970 last updated on 06/Sep/23
thank you so much sir Frix
thankyousomuchsirFrix
Commented by Frix last updated on 06/Sep/23
��
Answered by universe last updated on 10/Sep/23
  2I  = ∫_0 ^(π/2) (sin x+cos x)(√((3/2)−(1/2)(sin x−cos x)^2 ))dx  let  sin x−cos x = t ⇒ (sin x+cos x)dx = dt  I = (1/(2(√2)))∫_(−1) ^1 (√(3 − t^2 ))  dt  I  = (1/( (√2)))∫_0 ^1 (√(((√3))^2 −t^2 ))dt  I  =  (1/( (√2)))[(t/2)(√(3−t^2  )) + (3/2)sin^(−1) (t/( (√3)))]_0 ^1   I  =  (1/(2(√2)))[(√2) + 3sin^(−1) (1/( (√3)))]
2I=0π/2(sinx+cosx)3212(sinxcosx)2dxletsinxcosx=t(sinx+cosx)dx=dtI=122113t2dtI=1201(3)2t2dtI=12[t23t2+32sin1t3]01I=122[2+3sin113]
Commented by mnjuly1970 last updated on 06/Sep/23
thank you so much sir  nice solution
thankyousomuchsirnicesolution
Answered by ajfour last updated on 07/Sep/23
sin ((π/2)−2x)=cos 2x=2t  1−2sin^2 x=2t  −sin 2xdx=dt  ∫=sin xdx(√(1+((sin 2x)/2)))  =(1/( 2(√2)))(√((1−2t)/(1+2t)))((√(2+(√(1−4t^2 ))))/( (√(1−4t^2 ))))dt  ...
sin(π22x)=cos2x=2t12sin2x=2tsin2xdx=dt=sinxdx1+sin2x2=12212t1+2t2+14t214t2dt

Leave a Reply

Your email address will not be published. Required fields are marked *