Question Number 197024 by mnjuly1970 last updated on 06/Sep/23

Answered by Frix last updated on 06/Sep/23
![∫sin x (√(1+sin x cos x)) dx =^(t=x−(π/4)) =∫(((cos t +sin t)(√(1+2cos^2 t)))/2)dt =^(u=tan t) =∫(((u+1)(√(u^2 +3)))/(2(u^2 +1)^2 ))du =^(v=((u+(√(u^2 +3)))/( (√3)))) =∫(((√3)((√3)v−1)((√3)v+3)(v^2 +1)^2 )/((3v^4 −2v^2 +3)^2 ))dv =_(Method) ^(Ostrogradski′s) =−(((√3)v^3 −v^2 +(√3)v+3)/(2(3v^4 −2v^2 +3)))+∫(((√3)v^2 +6v−(√3))/(2(3v^4 −2v^2 +3)))dv= =−(((√3)v^3 −v^2 +(√3)v+3)/(2(3v^4 −2v^2 +3)))+((√2)/(16))ln ((3v^2 −2(√6)v+3)/(3v^2 +2(√6)v+3))+((3(√2))/8)(tan^(−1) ((√3)v−(√2)) −tan^(−1) ((√3)v+(√2))) x∈[0, (π/2)] ⇒ v∈[((√3)/3), (√3)] ⇒ Ω=((3(√2)π)/(16))+(1/2)−((3(√2))/8)tan^(−1) ((√2)/4) ≈1.15281482](https://www.tinkutara.com/question/Q197026.png)
Commented by mnjuly1970 last updated on 06/Sep/23

Commented by Frix last updated on 06/Sep/23
��
Answered by universe last updated on 10/Sep/23
![2I = ∫_0 ^(π/2) (sin x+cos x)(√((3/2)−(1/2)(sin x−cos x)^2 ))dx let sin x−cos x = t ⇒ (sin x+cos x)dx = dt I = (1/(2(√2)))∫_(−1) ^1 (√(3 − t^2 )) dt I = (1/( (√2)))∫_0 ^1 (√(((√3))^2 −t^2 ))dt I = (1/( (√2)))[(t/2)(√(3−t^2 )) + (3/2)sin^(−1) (t/( (√3)))]_0 ^1 I = (1/(2(√2)))[(√2) + 3sin^(−1) (1/( (√3)))]](https://www.tinkutara.com/question/Q197039.png)
Commented by mnjuly1970 last updated on 06/Sep/23

Answered by ajfour last updated on 07/Sep/23
