Menu Close

Question-197008




Question Number 197008 by tri26112004 last updated on 06/Sep/23
Answered by AST last updated on 06/Sep/23
((x^2 −y^2 =x^2 +y^2 −2y^2 )/(x^2 +y^2 ))=1−((2y^2 )/(x^2 +y^2 ))=Z  Along y=x,Z=0;Along x=0,Z=−1  ⇒lim does not exist
$$\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{2}{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }={Z} \\ $$$${Along}\:{y}={x},{Z}=\mathrm{0};{Along}\:{x}=\mathrm{0},{Z}=−\mathrm{1} \\ $$$$\Rightarrow{lim}\:{does}\:{not}\:{exist} \\ $$
Answered by MM42 last updated on 07/Sep/23
a) if  x=y⇒lim_((x,y)→(0,0))  ((x^2 −y^2 )/(x^2 +y^2 )) =0   if  y=2x⇒lim_((x,y)→(0,0))  ((x^2 −y^2 )/(x^2 +y^2 )) =lim_(x→0)  ((−3x^2 )/(5x^2 ))=−(3/5)  ⇒ lim  “ not exist ” ✓  b)  lim_((x,y)→(0,2))  ((x^2 +(y−2)^2 )/((x^2 +(y−2)^2 )((√(x^2 +(y−2)^2 +1))+1))) =(1/2)  ✓
$$\left.{a}\right)\:{if}\:\:{x}={y}\Rightarrow{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:=\mathrm{0} \\ $$$$\:{if}\:\:{y}=\mathrm{2}{x}\Rightarrow{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{−\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{5}{x}^{\mathrm{2}} }=−\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\Rightarrow\:{lim}\:\:“\:{not}\:{exist}\:''\:\checkmark \\ $$$$\left.{b}\right)\:\:{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{2}\right)} \:\frac{{x}^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} \right)\left(\sqrt{{x}^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{1}}+\mathrm{1}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *