Question Number 197057 by ajfour last updated on 07/Sep/23
Commented by ajfour last updated on 07/Sep/23
$${The}\:{ant}\:{has}\:{to}\:{climb}\:{up}\:{the}\:{plane} \\ $$$${and}\:{surmount}\:{the}\:{wall}\:{of}\:{height}\:{c}, \\ $$$${and}\:{descend}\:{then}\:{reach}\:{B}.\:{Find}\:{the} \\ $$$${shortest}\:{length}\:{of}\:{path}. \\ $$
Commented by Frix last updated on 08/Sep/23
$$\mathrm{Depending}\:\mathrm{on}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a},\:{b},\:{c}\:\mathrm{the}\:\mathrm{path} \\ $$$$\mathrm{along}\:\mathrm{the}\:\mathrm{diagonal}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectangle}\:{ab}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{rectangle}\:{bc}\:\mathrm{on}\:\mathrm{the}\:\mathrm{right}\:\mathrm{side}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{shorter}.\:\mathrm{We}\:\mathrm{have} \\ $$$$\sqrt{{b}^{\mathrm{2}} +\left({a}+{b}+{c}\right)^{\mathrm{2}} }\lesseqgtr\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{Let}\:{b}={pa}\wedge{c}={qa};\:{p},\:{q}\:>\mathrm{0} \\ $$$${a}\sqrt{{p}^{\mathrm{2}} +\left(\mathrm{1}+{p}+{q}\right)^{\mathrm{2}} }\lesseqgtr{a}\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }+{a}\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} } \\ $$$${p}^{\mathrm{2}} +\left({p}+{q}+\mathrm{1}\right)^{\mathrm{2}} \lesseqgtr\mathrm{2}{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}\sqrt{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${p}+{pq}+{q}\lesseqgtr\sqrt{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${p}\left({p}^{\mathrm{3}} −\mathrm{2}{pq}−\mathrm{2}{q}\left({q}+\mathrm{1}\right)\right)\gtreqless\mathrm{0} \\ $$$${p}^{\mathrm{3}} −\mathrm{2}{pq}−\mathrm{2}{q}\left({q}+\mathrm{1}\right)\gtreqless\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Let}\:{q}=\alpha{p};\:\alpha>\mathrm{0} \\ $$$${p}\left({p}^{\mathrm{2}} −\mathrm{2}\alpha\left(\alpha+\mathrm{1}\right){p}−\mathrm{2}\alpha\right)\gtreqless\mathrm{0} \\ $$$${p}^{\mathrm{2}} −\mathrm{2}\alpha\left(\alpha+\mathrm{1}\right){p}−\mathrm{2}\alpha\gtreqless\mathrm{0} \\ $$$$ \\ $$$$\:\:\:\:\:{p}^{\mathrm{2}} −\mathrm{2}\alpha\left(\alpha+\mathrm{1}\right){p}−\mathrm{2}\alpha=\mathrm{0} \\ $$$$\:\:\:\:\:{p}=\alpha\left(\alpha+\mathrm{1}\right)\pm\sqrt{\alpha\left(\alpha+\mathrm{2}\right)\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\:\:\:\:\:{p}_{\mathrm{1}} =\alpha\left(\alpha+\mathrm{1}\right)−\sqrt{\alpha\left(\alpha+\mathrm{2}\right)\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)}<\mathrm{0}\forall\alpha>\mathrm{0} \\ $$$$\:\:\:\:\:{p}_{\mathrm{2}} =\alpha\left(\alpha+\mathrm{1}\right)+\sqrt{\alpha\left(\alpha+\mathrm{2}\right)\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)}>\mathrm{0}\forall\alpha>\mathrm{0} \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{have}\:{p}>\mathrm{0}\:\Rightarrow \\ $$$$\left({p}−{p}_{\mathrm{1}} \right)\left({p}−{p}_{\mathrm{2}} \right)<\mathrm{0};\:\mathrm{0}<{p}<{p}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\sqrt{{b}^{\mathrm{2}} +\left({a}+{b}+{c}\right)^{\mathrm{2}} }>\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\left({p}−{p}_{\mathrm{1}} \right)\left({p}−{p}_{\mathrm{2}} \right)=\mathrm{0};\:{p}={p}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\sqrt{{b}^{\mathrm{2}} +\left({a}+{b}+{c}\right)^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\left({p}−{p}_{\mathrm{1}} \right)\left({p}−{p}_{\mathrm{2}} \right)>\mathrm{0};\:{p}>{p}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\sqrt{{b}^{\mathrm{2}} +\left({a}+{b}+{c}\right)^{\mathrm{2}} }<\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$
Answered by Frix last updated on 07/Sep/23
$$\sqrt{{b}^{\mathrm{2}} +\left({a}+{b}+{c}\right)^{\mathrm{2}} } \\ $$$$\mathrm{The}\:\mathrm{shortest}\:\mathrm{path}\:\mathrm{is}\:\mathrm{the}\:\mathrm{diagonal}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{rectangle}\:\mathrm{we}\:\mathrm{get}\:\mathrm{by}\:\mathrm{unfolding}\:\mathrm{the}\:\mathrm{object}. \\ $$$$\mathrm{Its}\:\mathrm{sides}\:\mathrm{are}\:{b}\:\mathrm{and}\:\left({a}+{b}+{c}\right) \\ $$
Answered by mahdipoor last updated on 07/Sep/23
$${AB}={AM}+{MN}+{NB}\Rightarrow \\ $$$${p}\left({x},{y}\right)=\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }+\sqrt{{c}^{\mathrm{2}} +\left({b}−{x}−{y}\right)^{\mathrm{2}} }+\sqrt{{y}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\mathrm{0}\leqslant{x},{y}\leqslant{b} \\ $$$$\frac{{dp}}{{dx}}=\mathrm{0}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }}+\frac{\left(−{b}+{x}+{y}\right)}{\:\sqrt{{c}^{\mathrm{2}} +\left({b}−{x}−{y}\right)^{\mathrm{2}} }} \\ $$$$\frac{{dp}}{{dy}}=\mathrm{0}=\frac{{y}}{\:\sqrt{{y}^{\mathrm{2}} +{b}^{\mathrm{2}} }}+\frac{\left(−{b}+{x}+{y}\right)}{\:\sqrt{{c}^{\mathrm{2}} +\left({b}−{x}−{y}\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }}=\frac{{y}}{\:\sqrt{{y}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\Rightarrow{bx}={ay} \\ $$$$\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }}=\frac{{b}−\left(\mathrm{1}+\frac{{b}}{{a}}\right){x}}{\:\sqrt{{c}^{\mathrm{2}} +\left({b}−\left(\mathrm{1}+\frac{{b}}{{a}}\right){x}\right)^{\mathrm{2}} }}\Rightarrow \\ $$$${x}^{\mathrm{2}} \left({c}^{\mathrm{2}} +\left({b}−{mx}\right)^{\mathrm{2}} \right)=\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({b}−{mx}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} {c}^{\mathrm{2}} ={a}^{\mathrm{2}} \left({b}−{mx}\right)^{\mathrm{2}} \Rightarrow{xc}={ab}−\left({a}+{b}\right){x} \\ $$$$\Rightarrow{x}=\frac{{ab}}{\left({a}+{b}\right)+{c}}\:\:\:\:\&\:\:\:{y}=\frac{{b}^{\mathrm{2}} }{\left({a}+{b}\right)+{c}}\:\:\:\:\:\:\mathrm{0}\leqslant{x},{y}\leqslant{b} \\ $$
Commented by Frix last updated on 07/Sep/23
$$\mathrm{You}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\:\mathrm{this}.\:\mathrm{Look}\:\mathrm{at}\:\mathrm{my}\:\mathrm{explanation}. \\ $$
Commented by mahdipoor last updated on 07/Sep/23
$$\mathrm{Thats}\:\mathrm{right}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{logical}\:\mathrm{and} \\ $$$$\mathrm{faster},\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{for}\:\mathrm{both} \\ $$
Commented by Frix last updated on 07/Sep/23
$$\mathrm{Yes}. \\ $$
Answered by ajfour last updated on 08/Sep/23