Question Number 197095 by Mingma last updated on 07/Sep/23
Answered by mahdipoor last updated on 07/Sep/23
$$\frac{{AB}}{{sin}\mathrm{4}{a}}=\frac{{BM}}{{sina}}\:\:\: \\ $$$$\:\frac{{CD}}{{sin}\mathrm{4}{a}}=\frac{{MC}}{{sin}\mathrm{2}{a}}\Rightarrow\frac{\mathrm{2}.{CD}.{cosa}}{{sin}\mathrm{4}{a}}=\frac{{MC}}{{sina}}\Rightarrow \\ $$$$\frac{{MC}}{{sina}}+\frac{{BM}}{{sina}}=\frac{{CB}}{{sina}}=\frac{\mathrm{2}.{CD}.{cosa}}{{sin}\mathrm{4}{a}}+\frac{{AB}}{{sin}\mathrm{4}{a}} \\ $$$$\Rightarrow\frac{{sin}\mathrm{4}{a}}{{sina}}=\mathrm{4}{cos}\mathrm{2}{a}.{cosa}=\mathrm{2}{cosa}+\mathrm{1}\Rightarrow \\ $$$$\mathrm{8}{cos}^{\mathrm{3}} {a}−\mathrm{6}{cosa}−\mathrm{1}=\mathrm{0}\Rightarrow{a}=\mathrm{20}\:\:\:\left({how}??\right) \\ $$
Commented by sniper237 last updated on 07/Sep/23
$$\overset{{linearisation}\:} {\Rightarrow}\mathrm{2}{cos}\left(\mathrm{3}{a}\right)−\mathrm{1}=\mathrm{0} \\ $$$$\overset{{trigo}\:{eqt\%}} {\Rightarrow}\:{cos}\left(\mathrm{3}{a}\right)={cos}\left(\mathrm{60}\right) \\ $$$${Then}\:\:\mathrm{3}{a}=\mathrm{60}\:{and}\:{a}=\mathrm{20} \\ $$
Commented by Mingma last updated on 08/Sep/23
Perfect