Menu Close

0-ln-t-1-t-2-t-2-pi-2-2-




Question Number 197132 by Erico last updated on 08/Sep/23
∫^( +∞) _( 0) (((ln(t+(√(1+t^2 ))))/t))^2 =(π^2 /2)
0+(ln(t+1+t2)t)2=π22
Commented by mnjuly1970 last updated on 09/Sep/23
    ti tok agha sardool ..
titokaghasardool..
Answered by witcher3 last updated on 09/Sep/23
t=sh(x)  ∫_0 ^∞ ((x/(sh(x))))^2 ch(x)dx  =∫_0 ^∞ (x^2 /(sh^2 (x)))ch(x)=lim_((a,b)→(0,∞)) [−(x^2 /(sh(x)))]_a ^b +∫_0 ^∞ ((2x)/(sh(x)))dx  =2∫_0 ^∞ ((2x)/(e^x −e^(−x) ))dx  =∫_0 ^∞ ((4xe^(−x) )/(1−e^(−2x) ))dx  =4Σ_(n≥0) ∫_0 ^∞ xe^(−(1+2n)x) dx=Σ_(n≥0) (4/((1+2n)^2 ))  =4(ζ(2)−(1/4)ζ(2))=(π^2 /2)
t=sh(x)0(xsh(x))2ch(x)dx=0x2sh2(x)ch(x)=lim(a,b)(0,)[x2sh(x)]ab+02xsh(x)dx=202xexexdx=04xex1e2xdx=4n00xe(1+2n)xdx=n04(1+2n)2=4(ζ(2)14ζ(2))=π22

Leave a Reply

Your email address will not be published. Required fields are marked *