Question Number 197111 by cortano12 last updated on 08/Sep/23
$$\:\:\:\:\:\:\cancel{ } \\ $$
Answered by Frix last updated on 08/Sep/23
$$\int\frac{{dx}}{\:\sqrt{\mathrm{cos}^{\mathrm{3}} \:{x}\:\mathrm{sin}^{\mathrm{5}} \:{x}}}\:\overset{{t}=\mathrm{tan}\:{x}} {=} \\ $$$$\int\left({t}^{−\frac{\mathrm{1}}{\mathrm{2}}} +{t}^{−\frac{\mathrm{5}}{\mathrm{2}}} \right){dt}=\mathrm{2}{t}^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{\mathrm{2}}{\mathrm{3}}{t}^{−\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{2}\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{3}{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }= \\ $$$$=−\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2sin}\:{x}\right)\left(\mathrm{1}+\mathrm{2sin}\:{x}\right)}{\mathrm{3}\sqrt{\mathrm{cos}\:{x}\:\mathrm{sin}^{\mathrm{3}} \:{x}}}+{C} \\ $$$$\mathrm{The}\:\mathrm{integral}\:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}\:\mathrm{for}\:{x}\in\left[\frac{\pi}{\mathrm{4}},\:\frac{\pi}{\mathrm{2}}\right] \\ $$