Question Number 197190 by universe last updated on 10/Sep/23
$$\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{\mathrm{1}−{x}^{\mathrm{7}} }\:{dx}\:−\:\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:^{\mathrm{7}} \sqrt{\mathrm{1}−{x}^{\mathrm{3}} }\:{dx}\:\:=\:\:? \\ $$
Commented by Frix last updated on 10/Sep/23
$$\mathrm{0} \\ $$
Commented by universe last updated on 10/Sep/23
$${solution}\:{sir} \\ $$$$ \\ $$
Answered by Mathspace last updated on 11/Sep/23
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx}\:\:\:\:\left({x}={t}^{\frac{\mathrm{1}}{\mathrm{7}}} \right) \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{7}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{7}}−\mathrm{1}} {dt} \\ $$$${B}\left({p},{q}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{p}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{q}−\mathrm{1}} {dt} \\ $$$$\Rightarrow{I}=\frac{\mathrm{1}}{\mathrm{7}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{1}} .{t}^{\frac{\mathrm{1}}{\mathrm{7}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{7}}{B}\left(\frac{\mathrm{4}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{7}}\right) \\ $$$${J}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} {dx}\:\:\left({x}={t}^{\frac{\mathrm{1}}{\mathrm{3}}} \right) \\ $$$${J}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{7}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{8}}{\mathrm{7}}−\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{B}\left(\frac{\mathrm{8}}{\mathrm{7}}.\frac{\mathrm{1}}{\mathrm{3}}\right)\:\Rightarrow \\ $$$${I}−{J}=\frac{\mathrm{1}}{\mathrm{7}}{B}\left(\frac{\mathrm{4}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{7}}\right)−\frac{\mathrm{1}}{\mathrm{3}}{B}\left(\frac{\mathrm{8}}{\mathrm{7}},\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$