Menu Close

1-x-3-3x-7-dx-




Question Number 197191 by tri26112004 last updated on 10/Sep/23
∫(1/(x^3 −3x+7))dx
$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{7}}{dx} \\ $$
Answered by Frix last updated on 10/Sep/23
x^3 −3x+7=(x−a)(x^2 +ax+b)  a=−((((7+3(√5)))^(1/3) +((7−3(√5)))^(1/3) )/( (2)^(1/3) )); b=−(7/a)  ∫(dx/((x−a)(x^2 +ax+b)))=  =(1/(2a^2 +b))∫(dx/(x−a))−(1/(2a^2 +b))∫((x+2a)/(x^2 +ax+b))dx  Which are easy to solve. The only problem  is to write down the exact constants.
$${x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{7}=\left({x}−{a}\right)\left({x}^{\mathrm{2}} +{ax}+{b}\right) \\ $$$${a}=−\frac{\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}+\sqrt[{\mathrm{3}}]{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}};\:{b}=−\frac{\mathrm{7}}{{a}} \\ $$$$\int\frac{{dx}}{\left({x}−{a}\right)\left({x}^{\mathrm{2}} +{ax}+{b}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} +{b}}\int\frac{{dx}}{{x}−{a}}−\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} +{b}}\int\frac{{x}+\mathrm{2}{a}}{{x}^{\mathrm{2}} +{ax}+{b}}{dx} \\ $$$$\mathrm{Which}\:\mathrm{are}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}.\:\mathrm{The}\:\mathrm{only}\:\mathrm{problem} \\ $$$$\mathrm{is}\:\mathrm{to}\:\mathrm{write}\:\mathrm{down}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{constants}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *