Menu Close

Is-f-x-dx-0-x-lim-x-t-f-x-dt-




Question Number 197212 by MathematicalUser2357 last updated on 10/Sep/23
Is ∫f(x)dx=∫_0 ^x lim_(x→t) f(x)dt?
$$\mathrm{Is}\:\int{f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{x}} \underset{{x}\rightarrow{t}} {\mathrm{lim}}{f}\left({x}\right){dt}? \\ $$
Commented by mahdipoor last updated on 10/Sep/23
if     limf(x),x→t=f(t)  ∫f(x)dx=∫_0 ^( x) f(t)dt=F(x)+C=F(x)−F(0)
$${if}\:\:\:\:\:{limf}\left({x}\right),{x}\rightarrow{t}={f}\left({t}\right) \\ $$$$\int{f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\:{x}} {f}\left({t}\right){dt}={F}\left({x}\right)+{C}={F}\left({x}\right)−{F}\left(\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *