Question Number 197225 by sonukgindia last updated on 10/Sep/23
Answered by Frix last updated on 10/Sep/23
$${x}=\sqrt[{\mathrm{2}}]{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{10}}{\mathrm{9}}{x}}} \\ $$$${x}^{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{10}}{\mathrm{9}}{x}} \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} −\mathrm{1}\right)=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{10}}{\mathrm{9}}{x}} \\ $$$$\mathrm{27}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{10}}{\mathrm{9}}{x} \\ $$$${x}^{\mathrm{6}} −\mathrm{3}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{2}} −\frac{\mathrm{10}{x}}{\mathrm{243}}−\frac{\mathrm{82}}{\mathrm{81}}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\frac{{x}}{\mathrm{3}}−\mathrm{1}\right)\left({x}^{\mathrm{4}} +\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{17}{x}^{\mathrm{2}} }{\mathrm{9}}−\frac{\mathrm{8}{x}}{\mathrm{27}}+\frac{\mathrm{82}}{\mathrm{81}}\right)=\mathrm{0} \\ $$$${x}>\mathrm{0}\:\Rightarrow\:{x}=\frac{\mathrm{1}+\sqrt{\mathrm{37}}}{\mathrm{6}} \\ $$