Menu Close

Show-that-log-logi-log-pi-2-i-pi-2-




Question Number 197184 by pete last updated on 10/Sep/23
Show that log(−logi)=log((π/2))−i(π/2)
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{log}\left(−\mathrm{log}{i}\right)=\mathrm{log}\left(\frac{\pi}{\mathrm{2}}\right)−{i}\frac{\pi}{\mathrm{2}} \\ $$
Answered by Frix last updated on 10/Sep/23
ln (−ln i) =ln (π/2) −i(π/2)  −ln i =e^(ln (π/2) −i(π/2))   −ln i =(π/2)e^(−i(π/2))   −ln i =−(π/2)i  ln i =(π/2)i  i=e^(i(π/2))   i=i true
$$\mathrm{ln}\:\left(−\mathrm{ln}\:\mathrm{i}\right)\:=\mathrm{ln}\:\frac{\pi}{\mathrm{2}}\:−\mathrm{i}\frac{\pi}{\mathrm{2}} \\ $$$$−\mathrm{ln}\:\mathrm{i}\:=\mathrm{e}^{\mathrm{ln}\:\frac{\pi}{\mathrm{2}}\:−\mathrm{i}\frac{\pi}{\mathrm{2}}} \\ $$$$−\mathrm{ln}\:\mathrm{i}\:=\frac{\pi}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{2}}} \\ $$$$−\mathrm{ln}\:\mathrm{i}\:=−\frac{\pi}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{ln}\:\mathrm{i}\:=\frac{\pi}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{i}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} \\ $$$$\mathrm{i}=\mathrm{i}\:\mathrm{true} \\ $$
Commented by pete last updated on 10/Sep/23
Thank you sir
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by Frix last updated on 10/Sep/23
��

Leave a Reply

Your email address will not be published. Required fields are marked *