Menu Close

a-b-c-R-a-2b-3ac-3ac-a-4b-bc-b-Find-2b-a-3a-b-




Question Number 197248 by hardmath last updated on 11/Sep/23
a,b,c∈R  ((a + 2b − 3ac)/(3ac))  =  ((a + 4b − bc)/b)  Find:   ((2b)/a) − ((3a)/b)
$$\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{R} \\ $$$$\frac{\mathrm{a}\:+\:\mathrm{2b}\:−\:\mathrm{3ac}}{\mathrm{3ac}}\:\:=\:\:\frac{\mathrm{a}\:+\:\mathrm{4b}\:−\:\mathrm{bc}}{\mathrm{b}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{2b}}{\mathrm{a}}\:−\:\frac{\mathrm{3a}}{\mathrm{b}} \\ $$
Commented by Frix last updated on 11/Sep/23
−(((c+1)(3c^2 −15c+1))/(2c))±(((c−1)(√(9c^4 −90c^3 +231c^2 −6c+1)))/(2c))
$$−\frac{\left({c}+\mathrm{1}\right)\left(\mathrm{3}{c}^{\mathrm{2}} −\mathrm{15}{c}+\mathrm{1}\right)}{\mathrm{2}{c}}\pm\frac{\left({c}−\mathrm{1}\right)\sqrt{\mathrm{9}{c}^{\mathrm{4}} −\mathrm{90}{c}^{\mathrm{3}} +\mathrm{231}{c}^{\mathrm{2}} −\mathrm{6}{c}+\mathrm{1}}}{\mathrm{2}{c}} \\ $$
Commented by hardmath last updated on 11/Sep/23
Ser, ansver: 11
$$\mathrm{Ser},\:\mathrm{ansver}:\:\mathrm{11} \\ $$
Commented by Frix last updated on 12/Sep/23
You must be kidding. The given equation  has 3 variables. We can solve for one of these.  It′s not possible to get a unique solution.
$$\mathrm{You}\:\mathrm{must}\:\mathrm{be}\:\mathrm{kidding}.\:\mathrm{The}\:\mathrm{given}\:\mathrm{equation} \\ $$$$\mathrm{has}\:\mathrm{3}\:\mathrm{variables}.\:\mathrm{We}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{one}\:\mathrm{of}\:\mathrm{these}. \\ $$$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}\:\mathrm{unique}\:\mathrm{solution}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *