Menu Close

log-6-2-a-log-6-9-




Question Number 197249 by sciencestudentW last updated on 11/Sep/23
log_6 2=a  log_6 9=?
log26=alog96=?
Answered by AST last updated on 11/Sep/23
((log2)/(log2+log3))=a⇒log2(1−a)=alog3  ((2log3)/(log2+log3))=(2/(((log2)/(log3))+1))=(2/((a/(1−a))+1))=((2/1)/(1/(1−a)))=2−2a
log2log2+log3=alog2(1a)=alog32log3log2+log3=2log2log3+1=2a1a+1=2111a=22a
Answered by Rasheed.Sindhi last updated on 13/Sep/23
log_6 2=a; log_6 9=?  log_6 2=a⇒log_6 ((6/3))=a  log_6 6−log_6 3=a       1−log_6 3=a       log_6 3=1−a  ▶log_6 9=log_6 3^2  =2log_6 3=2(1−a)
log62=a;log69=?log62=alog6(63)=alog66log63=a1log63=alog63=1alog69=log632=2log63=2(1a)
Answered by Rasheed.Sindhi last updated on 13/Sep/23
log_6 2=a;log_6 9=?    a=log_6 2  =(1/2)log_6 4=(1/2)log_6 (((36)/9))  =(1/2){log_6 36−log_6 9}      =(1/2){2−log_6 9}=a  =1−((log_6 9)/2)=a  log_6 9=2(1−a)
log62=a;log69=?a=log62=12log64=12log6(369)=12{log636log69}=12{2log69}=a=1log692=alog69=2(1a)

Leave a Reply

Your email address will not be published. Required fields are marked *