How-to-calculate-this-integral-pi-2-0-ln-1-sint-sint-dt- Tinku Tara September 12, 2023 None 0 Comments FacebookTweetPin Question Number 197272 by Erico last updated on 12/Sep/23 Howtocalculatethisintegral∫0π2ln(1+sint)sintdt Answered by Mathspace last updated on 12/Sep/23 tan(t2)=x⇒I=∫01ln(1+2x1+x2)2x1+x22dx1+x2=∫01ln(1+x2+2x1+x2)xdx=∫01ln(x+1)2−ln(1+x2)xdx=2∫01ln(1+x)xdx−∫01ln(1+x2)xdxdxdxln(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nn+1xn+1=∑n=1∞(−1)n−1xnn⇒∫01ln(1+x)xdx=∑n=1∞(−1)n−1n∫01xn−1dx=∑n=1∞(−1)n−1n2=η(2)=(1−21−2)ξ(2)=12.π26=π212ln(1+x2)=∑n=1∞(−1)n−1nx2n⇒∫01ln(1+x2)xdx=∑n=1∞(−1)n−1n∫01x2n−1dx=12∑n=1∞(−1)n−1n2=12π212=π224⇒∫0π2ln(1+sinx)sinxdx=2.π212−π224=3π224=π28 Answered by universe last updated on 12/Sep/23 I=∫0π/2log(1+αsinx)dxsinxdIdα=∫0π/211+αsinxdxdIdα=∫0π/2sec2x/21+tan2x/2+2αtanx/2dxdIdα=∫012dyy2+2αy+1=∫012dy(y+α)2+(1−α2)dIdα=21−α2tan−1y+α1−α2∣01dIdα=21−α2[tan−11−α1−α2−tan−1α1−α2]dIdα=21−α2tan−1(1/1−α21+(1+α)α/1−α2)∫dIdα=∫21−α2tan−11−α1+αdαletα=cosβ⇒dα=−sinβdβI=−2∫tan−1(1−cosβ1+cosβ)dβI=−2∫β2dβI=−β22+cI=−(cos−1α)22+cletα=0thenI=0c=π28I=π28−(cos−1α)22nowputα=1I=π28 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-197274Next Next post: Question-197277 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.