Menu Close

How-to-calculate-this-integral-pi-2-0-ln-1-sint-sint-dt-




Question Number 197272 by Erico last updated on 12/Sep/23
How to calculate this integral  ∫^( (π/2)) _( 0)  ((ln(1+sint))/(sint))dt
Howtocalculatethisintegral0π2ln(1+sint)sintdt
Answered by Mathspace last updated on 12/Sep/23
tan((t/2))=x ⇒  I=∫_0 ^1 ((ln(1+((2x)/(1+x^2 ))))/((2x)/(1+x^2 )))((2dx)/(1+x^2 ))  =∫_0 ^1 ((ln(((1+x^2 +2x)/(1+x^2 ))))/x)dx  =∫_0 ^1 ((ln(x+1)^2 −ln(1+x^2 ))/x)dx  =2∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 ((ln(1+x^2 ))/x)dx  (dx/dx)ln(1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   ⇒ln(1+x)=Σ_(n=0) ^∞ (((−1)^n )/(n+1))x^(n+1)   =Σ_(n=1) ^∞ (−1)^(n−1) (x^n /n) ⇒  ∫_0 ^1 ((ln(1+x))/x)dx=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(n−1) dx  =Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )=η(2)  =(1−2^(1−2) )ξ(2)=(1/2).(π^2 /6)=(π^2 /(12))  ln(1+x^2 )=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^(2n)  ⇒  ∫_0 ^1 ((ln(1+x^2 ))/x)dx=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(2n−1) dx  =(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )  =(1/2)(π^2 /(12))=(π^2 /(24)) ⇒  ∫_0 ^(π/2) ((ln(1+sinx))/(sinx))dx  =2.(π^2 /(12))−(π^2 /(24))=((3π^2 )/(24))=(π^2 /8)
tan(t2)=xI=01ln(1+2x1+x2)2x1+x22dx1+x2=01ln(1+x2+2x1+x2)xdx=01ln(x+1)2ln(1+x2)xdx=201ln(1+x)xdx01ln(1+x2)xdxdxdxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1xnn01ln(1+x)xdx=n=1(1)n1n01xn1dx=n=1(1)n1n2=η(2)=(1212)ξ(2)=12.π26=π212ln(1+x2)=n=1(1)n1nx2n01ln(1+x2)xdx=n=1(1)n1n01x2n1dx=12n=1(1)n1n2=12π212=π2240π2ln(1+sinx)sinxdx=2.π212π224=3π224=π28
Answered by universe last updated on 12/Sep/23
 I    =  ∫_0 ^(𝛑/2) ((log (1+𝛂sin x) dx)/(sin x))   (dI/d𝛂)  =  ∫_0 ^(𝛑/2) (1/(1+𝛂sin x))dx      (dI/d𝛂)  = ∫_0 ^(𝛑/2  ) ((sec^2  x/2)/(1+tan^2 x/2+2𝛂tan x/2))dx  (dI/d𝛂)  =  ∫_0 ^1 ((2dy)/(y^2 +2𝛂y+1)) = ∫^1 _0 ((2dy)/((y+𝛂)^2 +(1−𝛂^2 )))     (dI/d𝛂) = (2/( (√(1−𝛂^2 ))))tan^(−1) ((y+𝛂)/( (√(1−𝛂^2 )))) ∣_0 ^1     (dI/d𝛂) = (2/( (√(1−𝛂^2 ))))[tan^(−1) ((1−𝛂)/( (√(1−𝛂^2 )))) − tan^(−1) (𝛂/( (√(1−𝛂^2 ))))]   (dI/d𝛂)  =   (2/( (√(1−𝛂^2 ))))tan^(−1) (((1/(√(1−𝛂^2 )))/(1+(1+𝛂)𝛂/1−𝛂^2 )))     ∫(dI/d𝛂) = ∫(2/( (√(1−𝛂^2 ))))tan^(−1) (√((1−𝛂)/(1+𝛂))) d𝛂    let  𝛂 = cos𝛃   ⇒  d𝛂  = −sin 𝛃 d𝛃  I   =   −2∫tan^(−1) ((√((1−cos 𝛃)/(1+cos 𝛃))) )d𝛃  I  =  −2∫(𝛃/2) d𝛃    I   =   −(𝛃^2 /2) +c  I =  −(((cos^(−1) 𝛂)^2  )/2) + c  let 𝛂 = 0  then I = 0  c  = (𝛑^2 /8)    I  =   (𝛑^2 /8) − (((cos^(−1) 𝛂)^2 )/2)    now put 𝛂 = 1  I  =  (𝛑^2 /8)
I=0π/2log(1+αsinx)dxsinxdIdα=0π/211+αsinxdxdIdα=0π/2sec2x/21+tan2x/2+2αtanx/2dxdIdα=012dyy2+2αy+1=012dy(y+α)2+(1α2)dIdα=21α2tan1y+α1α201dIdα=21α2[tan11α1α2tan1α1α2]dIdα=21α2tan1(1/1α21+(1+α)α/1α2)dIdα=21α2tan11α1+αdαletα=cosβdα=sinβdβI=2tan1(1cosβ1+cosβ)dβI=2β2dβI=β22+cI=(cos1α)22+cletα=0thenI=0c=π28I=π28(cos1α)22nowputα=1I=π28

Leave a Reply

Your email address will not be published. Required fields are marked *