Menu Close

lim-x-0-sin-2-x-sin-x-2-x-2-cos-2-x-cos-x-2-




Question Number 197282 by cortano12 last updated on 12/Sep/23
      lim_(x→0)  ((sin^2 x−sin x^2 )/(x^2  (cos^2 x−cos x^2  ))) =?
$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{cos}\:\mathrm{x}^{\mathrm{2}} \:\right)}\:=? \\ $$
Answered by MM42 last updated on 12/Sep/23
lim_(x→0)  ((sin^2 x−x^2 +x^2 −sinx^2 )/(x^2 (cos^2 x−1+1−cosx^2 )))  =lim_(x→0)  (((sinx+x)(sinx−x)+(1/6)x^6 )/(x^2 ((cosx−1)(cosx+1)+(1/2)x^4 )))  =lim_(x→0)  (((2x)(−(1/6)x^3 )+(1/6)x^6 )/(x^2 ((−(1/2)x^2 )(cosx+1)+(1/2)x^4 )))  =lim_(x→0)  ((−(1/3)x^4 +(1/6)x^6 )/(−x^4 +(1/2)x^6 ))=(1/3) ✓
$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{sin}^{\mathrm{2}} {x}−{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{sinx}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({cos}^{\mathrm{2}} {x}−\mathrm{1}+\mathrm{1}−{cosx}^{\mathrm{2}} \right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\left({sinx}+{x}\right)\left({sinx}−{x}\right)+\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{6}} }{{x}^{\mathrm{2}} \left(\left({cosx}−\mathrm{1}\right)\left({cosx}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{4}} \right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\left(\mathrm{2}{x}\right)\left(−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} \right)+\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{6}} }{{x}^{\mathrm{2}} \left(\left(−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right)\left({cosx}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{4}} \right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{6}} }{−{x}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{6}} }=\frac{\mathrm{1}}{\mathrm{3}}\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *