Menu Close

lim-x-0-sin-x-x-2x-5-3x-3-




Question Number 197281 by cortano12 last updated on 12/Sep/23
      lim_(x→0)  ((sin x−x+2x^5 )/(3x^3 )) =?
$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{x}+\mathrm{2x}^{\mathrm{5}} }{\mathrm{3x}^{\mathrm{3}} }\:=? \\ $$
Answered by MM42 last updated on 12/Sep/23
lim_(x→0)  ((−(1/6)x^3 +2x^5 )/(3x^3 )) =−(1/(18)) ✓
$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{5}} }{\mathrm{3}{x}^{\mathrm{3}} }\:=−\frac{\mathrm{1}}{\mathrm{18}}\:\checkmark \\ $$
Answered by a.lgnaoui last updated on 12/Sep/23
=lim_(x→0) ((1/(3x^2 ))−((1−2x^4 )/(3x^2 )))=lim_(x→0) (2/3)x^2 =0
$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{3x}^{\mathrm{2}} }−\frac{\mathrm{1}−\mathrm{2x}^{\mathrm{4}} }{\mathrm{3x}^{\mathrm{2}} }\right)=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \frac{\mathrm{2}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} =\mathrm{0} \\ $$
Answered by tri26112004 last updated on 13/Sep/23
= lim_(x→0)  ((cos x + 10x^4 −1)/(9x^2 ))  = lim_(x→0)  ((−sin x + 40x^3 )/(18x))  = lim_(x→0)  ((−cos x + 120x^2 )/(18))   = − (1/(18))
$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{cos}\:{x}\:+\:\mathrm{10}{x}^{\mathrm{4}} −\mathrm{1}}{\mathrm{9}{x}^{\mathrm{2}} } \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−{sin}\:{x}\:+\:\mathrm{40}{x}^{\mathrm{3}} }{\mathrm{18}{x}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−{cos}\:{x}\:+\:\mathrm{120}{x}^{\mathrm{2}} }{\mathrm{18}} \\ $$$$\:=\:−\:\frac{\mathrm{1}}{\mathrm{18}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *