Menu Close

If-f-x-sin-x-x-and-S-n-k-1-n-f-kpi-pi-f-kpi-pi-gt-1-Prove-that-lim-n-S-n-1-f-pi-




Question Number 197323 by Erico last updated on 13/Sep/23
If f(x)=((sin(x))/x)   and S_n (α)=Σ_(k=1) ^n [f(kπ+(π/α))+f(kπ−(π/α))]    (α>1)  Prove that  lim_(n→+∞)  S_n (α)=1−f((π/α))
Iff(x)=sin(x)xandSn(α)=nk=1[f(kπ+πα)+f(kππα)](α>1)Provethatlimn+Sn(α)=1f(πα)
Answered by witcher3 last updated on 14/Sep/23
S_n (a)=Σ_1 ^n (f(kπ+(π/a))−f(kπ−(π/a)))  T(a)Σ_(k=1) ^n (((−1)^k sin((π/a)))/(kπ+(π/a)))  −T(−a)+T(a)=S_n (a)  T(a)=((sin((π/a)))/π)Σ_(k=1) ^n (((−1)^k )/(k+(1/a)))...cv  Σ(−1)^k ≤2,..(1/(k+(1/a))) decrease cv →0  T(a)..cv  Σ_(k=1) ^∞ (((−1)^k )/(k+(1/a)))=Σ_(k=1) ^∞ (1/(2k+(1/a)))−(1/(2k−1+(1/a)))  =(1/2)Σ_(k=1) ^∞ (1/(k+(1/(2a))))−(1/(k+(1/2)((1/a)−1)))  =(1/2)(Ψ((1/2)((1/a)+1))−Ψ((1/(2a))+1))  S_n (a)=Γ(a)−Γ(−a)  =((sin((π/a)))/(2π))(Ψ((1/2)+(1/(2a)))−Ψ((1/2)−(1/(2a)))−Ψ(1+(1/(2a)))+Ψ(1−(1/(2a))))  =((sin((π/a)))/(2π))(Ψ(1−((1/2)−(1/(2a)))−Ψ((1/2)−(1/(2a)))−2a−Ψ((1/(2a)))+Ψ(1−(1/(2a))))  =((sin((π/a)))/(2π))(πcot(π((1/2)−(1/(2a)))−2a+πcot((π/(2a)))  =((sin((π/a)))/2)(tg((1/(2a)))+cot((1/(2a))))−((sin((π/a)))/(π/a))  =((sin((π/a)))/2)(((cos^2 ((1/(2a)))+sin^2 ((1/(2a))))/(sin((π/(2a)))cos((π/(2a))))))−f((π/a))  =1−f((π/a))
Sn(a)=n1(f(kπ+πa)f(kππa))T(a)nk=1(1)ksin(πa)kπ+πaT(a)+T(a)=Sn(a)T(a)=sin(πa)πnk=1(1)kk+1acvΣ(1)k2,..1k+1adecreasecv0T(a)..cvk=1(1)kk+1a=k=112k+1a12k1+1a=12k=11k+12a1k+12(1a1)=12(Ψ(12(1a+1))Ψ(12a+1))Sn(a)=Γ(a)Γ(a)=sin(πa)2π(Ψ(12+12a)Ψ(1212a)Ψ(1+12a)+Ψ(112a))=sin(πa)2π(Ψ(1(1212a)Ψ(1212a)2aΨ(12a)+Ψ(112a))=sin(πa)2π(πcot(π(1212a)2a+πcot(π2a)=sin(πa)2(tg(12a)+cot(12a))sin(πa)πa=sin(πa)2(cos2(12a)+sin2(12a)sin(π2a)cos(π2a))f(πa)=1f(πa)

Leave a Reply

Your email address will not be published. Required fields are marked *