Menu Close

lim-x-1-x-2-cosx-




Question Number 197336 by Huy last updated on 13/Sep/23
lim_(x→+∞) ((1/x^2 )+cosx)=?
$${lim}_{{x}\rightarrow+\infty} \left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{cos}{x}\right)=? \\ $$
Answered by TheHoneyCat last updated on 13/Sep/23
This limit is undefined  (because lim(1/x^2 )=0 and lim cosx is undefined)
$$\mathrm{This}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{undefined} \\ $$$$\left(\mathrm{because}\:\mathrm{lim}\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{0}\:\mathrm{and}\:\mathrm{lim}\:\mathrm{cos}{x}\:\mathrm{is}\:\mathrm{undefined}\right) \\ $$
Answered by MM42 last updated on 13/Sep/23
let  f(x)=(1/x^2 )+cosx  for  a_n =2nπ⇒lim_(n→+∞) f(a_n )=cos2nπ=1  for  b_n =2nπ+π⇒lim_(n→+∞) f(b_n )=cosπ=−1  ⇒ lim_(x→+∞) f(x)=not  exist
$${let}\:\:{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+{cosx} \\ $$$${for}\:\:{a}_{{n}} =\mathrm{2}{n}\pi\Rightarrow{lim}_{{n}\rightarrow+\infty} {f}\left({a}_{{n}} \right)={cos}\mathrm{2}{n}\pi=\mathrm{1} \\ $$$${for}\:\:{b}_{{n}} =\mathrm{2}{n}\pi+\pi\Rightarrow{lim}_{{n}\rightarrow+\infty} {f}\left({b}_{{n}} \right)={cos}\pi=−\mathrm{1} \\ $$$$\Rightarrow\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)={not}\:\:{exist} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *