Menu Close

log-2-20-2-log-2-5-2-log-2-10-




Question Number 197312 by mathlove last updated on 13/Sep/23
(((log_2 20)^2 −(log_2 5)^2 )/(log_2 10))=?
$$\frac{\left({log}_{\mathrm{2}} \mathrm{20}\right)^{\mathrm{2}} −\left({log}_{\mathrm{2}} \mathrm{5}\right)^{\mathrm{2}} }{{log}_{\mathrm{2}} \mathrm{10}}=? \\ $$
Answered by som(math1967) last updated on 13/Sep/23
4
$$\mathrm{4} \\ $$
Commented by som(math1967) last updated on 13/Sep/23
 (((log_2 20+log_2 5)(log_2 20−log_2 5))/(log_2 10))  =((log_2 100×log_2 4)/(log_2 10))  =((2log_2 10×2log_2 2)/(log_2 10))  =4
$$\:\frac{\left({log}_{\mathrm{2}} \mathrm{20}+{log}_{\mathrm{2}} \mathrm{5}\right)\left({log}_{\mathrm{2}} \mathrm{20}−{log}_{\mathrm{2}} \mathrm{5}\right)}{{log}_{\mathrm{2}} \mathrm{10}} \\ $$$$=\frac{{log}_{\mathrm{2}} \mathrm{100}×{log}_{\mathrm{2}} \mathrm{4}}{{log}_{\mathrm{2}} \mathrm{10}} \\ $$$$=\frac{\mathrm{2}{log}_{\mathrm{2}} \mathrm{10}×\mathrm{2}{log}_{\mathrm{2}} \mathrm{2}}{{log}_{\mathrm{2}} \mathrm{10}} \\ $$$$=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *