Menu Close

Prove-that-n-1-C-r-n-C-r-n-C-r-1-




Question Number 197311 by cortano12 last updated on 13/Sep/23
     Prove that         _(n+1)  C_r  = _n C_r  + _n C_(r−1)
$$\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:\:_{\mathrm{n}+\mathrm{1}} \:\mathrm{C}_{\mathrm{r}} \:=\:_{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \:+\:_{\mathrm{n}} \mathrm{C}_{\mathrm{r}−\mathrm{1}} \: \\ $$
Answered by qaz last updated on 14/Sep/23
 (((n+1)),((   r)) )= ((n),(r) )+ (((   n)),((r−1)) )  ?   (((n+1)),((   r)) )=[x^r ](1+x)^(n+1)   =[x^r ]((1+x)^n +x(1+x)^n )  = ((n),(r) )+ (((   n)),((r−1)) )
$$\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:{r}}\end{pmatrix}=\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}+\begin{pmatrix}{\:\:\:{n}}\\{{r}−\mathrm{1}}\end{pmatrix}\:\:? \\ $$$$\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:{r}}\end{pmatrix}=\left[{x}^{{r}} \right]\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{1}} \\ $$$$=\left[{x}^{{r}} \right]\left(\left(\mathrm{1}+{x}\right)^{{n}} +{x}\left(\mathrm{1}+{x}\right)^{{n}} \right) \\ $$$$=\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}+\begin{pmatrix}{\:\:\:{n}}\\{{r}−\mathrm{1}}\end{pmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *