Question Number 197376 by megrex last updated on 15/Sep/23
$${Does}\:{anyone}\:{know}\:{how}\:{to}\:{prove}\:{this}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\int\int_{{V}} \:\frac{{dxdydz}}{\mathrm{1}+{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} }\:=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}^{\mathrm{4}} } \\ $$$${where}\:{V}\:{is}\:{the}\:{unit}\:{cube}\:\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} \\ $$$${Thankyou}. \\ $$$$ \\ $$
Answered by witcher3 last updated on 15/Sep/23
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} }=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} \right)} \mathrm{dt} \\ $$$$\mathrm{I}=\int\int\int_{\mathrm{V}} \frac{\mathrm{dxdydz}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} }=\int\int\int_{\mathrm{V}} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} \right)} \mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} \left\{\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{tx}^{\mathrm{4}} } \mathrm{dx}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{ty}^{\mathrm{4}} } \mathrm{dy}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{tz}^{\mathrm{4}} } \mathrm{dz}\right\}\mathrm{dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{ts}^{\mathrm{4}} } \mathrm{ds},\mathrm{t}\in\left[\mathrm{0},\infty\left[,\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{y}} \right.\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{y}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} }{\:\sqrt[{\mathrm{4}}]{\mathrm{t}}}\mathrm{e}^{−\mathrm{y}} \mathrm{dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\sqrt[{\mathrm{4}}]{\mathrm{t}}}.\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} \left\{\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4t}^{\frac{\mathrm{1}}{\mathrm{4}}} }\right\}^{\mathrm{3}} =\frac{\Gamma^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}^{\mathrm{3}} }\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{−\frac{\mathrm{3}}{\mathrm{4}}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$=\frac{\Gamma^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}^{\mathrm{3}} }\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}^{\mathrm{3}} }…\mathrm{may}\:\mathrm{bee}\:\mathrm{error}\:\mathrm{of}\:\mathrm{calculus} \\ $$$$\mathrm{I}\:\mathrm{didint}\:\mathrm{find}\:\mathrm{4}^{\mathrm{4}} \\ $$$$ \\ $$
Commented by megrex last updated on 16/Sep/23
$${Very}\:{nicely}\:{done}\:−\:{thankyou}\:{for}\:{your}\:{time}\: \\ $$$$\left({I}\:{will}\:{double}\:{check}\:{my}\:{extra}\:{factor}\right). \\ $$$${This}\:{could}\:{easily}\:{be}\:{generalised}\:{to}\: \\ $$$${a}\:{d}−{dimensional}\:{cube}\:{with} \\ $$$$\:{arbitrary}\:{powers}\:{of}\:{x}^{{p}} \:\: \\ $$$$\:−{which}\:{is}\:{really}\:{nice}! \\ $$$$ \\ $$$$ \\ $$
Commented by witcher3 last updated on 16/Sep/23
$$\mathrm{withe}\:\mathrm{Pleasur} \\ $$