Menu Close

Does-anyone-know-how-to-prove-this-V-dxdydz-1-x-4-y-4-z-4-4-1-4-4-4-where-V-is-the-unit-cube-0-1-3-Thankyou-




Question Number 197376 by megrex last updated on 15/Sep/23
Does anyone know how to prove this?            ∫∫∫_V  ((dxdydz)/(1+x^4 +y^4 +z^4 )) =((Γ^4 ((1/4)))/4^4 )  where V is the unit cube [0,1]^3   Thankyou.
Doesanyoneknowhowtoprovethis?Vdxdydz1+x4+y4+z4=Γ4(14)44whereVistheunitcube[0,1]3Thankyou.
Answered by witcher3 last updated on 15/Sep/23
(1/(1+x^4 +y^4 +z^4 ))=∫_0 ^∞ e^(−t(1+x^4 +y^4 +z^4 )) dt  I=∫∫∫_V ((dxdydz)/(1+x^4 +y^4 +z^4 ))=∫∫∫_V ∫_0 ^∞ e^(−t(1+x^4 +y^4 +z^4 )) dt  =∫_0 ^∞ e^(−t) {∫_0 ^1 e^(−tx^4 ) dx∫_0 ^1 e^(−ty^4 ) dy∫_0 ^1 e^(−tz^4 ) dz}dt  ∫_0 ^1 e^(−ts^4 ) ds,t∈[0,∞[,∫_0 ^∞ e^(−y)   =(1/4)∫_0 ^∞ (y^((1/4)−1) /( (t)^(1/4) ))e^(−y) dy  =(1/(4(t)^(1/4) )).Γ((1/4))  I=∫_0 ^∞ e^(−t) {((Γ((1/4)))/(4t^(1/4) ))}^3 =((Γ^3 ((1/4)))/4^3 )∫_0 ^∞ t^(−(3/4)) e^(−t) dt  =((Γ^3 ((1/4)))/4^3 )Γ((1/4))=((Γ^4 ((1/4)))/4^3 )...may bee error of calculus  I didint find 4^4
11+x4+y4+z4=0et(1+x4+y4+z4)dtI=Vdxdydz1+x4+y4+z4=V0et(1+x4+y4+z4)dt=0et{01etx4dx01ety4dy01etz4dz}dt01ets4ds,t[0,[,0ey=140y141t4eydy=14t4.Γ(14)I=0et{Γ(14)4t14}3=Γ3(14)430t34etdt=Γ3(14)43Γ(14)=Γ4(14)43maybeeerrorofcalculusIdidintfind44
Commented by megrex last updated on 16/Sep/23
Very nicely done − thankyou for your time   (I will double check my extra factor).  This could easily be generalised to   a d−dimensional cube with   arbitrary powers of x^p      −which is really nice!
Verynicelydonethankyouforyourtime(Iwilldoublecheckmyextrafactor).Thiscouldeasilybegeneralisedtoaddimensionalcubewitharbitrarypowersofxpwhichisreallynice!
Commented by witcher3 last updated on 16/Sep/23
withe Pleasur
withePleasur

Leave a Reply

Your email address will not be published. Required fields are marked *