Menu Close

Question-197388




Question Number 197388 by cortano12 last updated on 16/Sep/23
Answered by MM42 last updated on 16/Sep/23
x=1  &  y=1
$${x}=\mathrm{1}\:\:\&\:\:{y}=\mathrm{1} \\ $$
Answered by Rasheed.Sindhi last updated on 16/Sep/23
Find x and y   { ((9x^2 −4y^2 =5............(i))),((log_5 (3x+2y)−log_5 (3x−2y)=1...(ii)  )) :}  (i)⇒(3x+2y)(3x−2y)=5       ⇒log_5 (3x+2y)+log_5 (3x−2y)=1...(iii)  (ii)+(iii):    2log_5 (3x+2y)=2    log_5 (3x+2y)=1       3x+2y=5........A  (iii)−(ii):  2log_5 (3x−2y)=0     3x−2y=5^0 =1.....B  A+B:  6x=6⇒x=1  A−B:  4y=4⇒y=1
$${Find}\:{x}\:{and}\:{y} \\ $$$$\begin{cases}{\mathrm{9}{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} =\mathrm{5}…………\left({i}\right)}\\{\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}+\mathrm{2}{y}\right)−\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}−\mathrm{2}{y}\right)=\mathrm{1}…\left({ii}\right)\:\:}\end{cases} \\ $$$$\left({i}\right)\Rightarrow\left(\mathrm{3}{x}+\mathrm{2}{y}\right)\left(\mathrm{3}{x}−\mathrm{2}{y}\right)=\mathrm{5} \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}+\mathrm{2}{y}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}−\mathrm{2}{y}\right)=\mathrm{1}…\left({iii}\right) \\ $$$$\left({ii}\right)+\left({iii}\right): \\ $$$$\:\:\mathrm{2log}_{\mathrm{5}} \left(\mathrm{3}{x}+\mathrm{2}{y}\right)=\mathrm{2} \\ $$$$\:\:\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}+\mathrm{2}{y}\right)=\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{5}……..{A} \\ $$$$\left({iii}\right)−\left({ii}\right): \\ $$$$\mathrm{2log}_{\mathrm{5}} \left(\mathrm{3}{x}−\mathrm{2}{y}\right)=\mathrm{0} \\ $$$$\:\:\:\mathrm{3}{x}−\mathrm{2}{y}=\mathrm{5}^{\mathrm{0}} =\mathrm{1}…..{B} \\ $$$${A}+{B}: \\ $$$$\mathrm{6}{x}=\mathrm{6}\Rightarrow{x}=\mathrm{1} \\ $$$${A}−{B}: \\ $$$$\mathrm{4}{y}=\mathrm{4}\Rightarrow{y}=\mathrm{1} \\ $$
Commented by cortano12 last updated on 16/Sep/23
nice
$$\mathrm{nice}\: \\ $$
Answered by Rasheed.Sindhi last updated on 16/Sep/23
x,y=?    { ((9x^2 −4y^2 =5.......(i))),((log_5 (3x+2y)−log_5 (3x−2y)=1...(ii)  )) :}  (ii)⇒log_5 (((3x+2y)/(3x−2y)))=1          ((3x+2y)/(3x−2y))=5          ((3x+2y)/(3x−2y))+1=6          ((6x)/(3x−2y))=6          x=3x−2y        2x−2y=0⇒x=y  (i)⇒9x^2 −4x^2 =5               x^2 =1=y^2   x=y=1 ∨ x=y=−1( invalid)
$${x},{y}=? \\ $$$$\:\begin{cases}{\mathrm{9}{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} =\mathrm{5}…….\left({i}\right)}\\{\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}+\mathrm{2}{y}\right)−\mathrm{log}_{\mathrm{5}} \left(\mathrm{3}{x}−\mathrm{2}{y}\right)=\mathrm{1}…\left({ii}\right)\:\:}\end{cases} \\ $$$$\left({ii}\right)\Rightarrow\mathrm{log}_{\mathrm{5}} \left(\frac{\mathrm{3}{x}+\mathrm{2}{y}}{\mathrm{3}{x}−\mathrm{2}{y}}\right)=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{3}{x}+\mathrm{2}{y}}{\mathrm{3}{x}−\mathrm{2}{y}}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{3}{x}+\mathrm{2}{y}}{\mathrm{3}{x}−\mathrm{2}{y}}+\mathrm{1}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{6}{x}}{\mathrm{3}{x}−\mathrm{2}{y}}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:{x}=\mathrm{3}{x}−\mathrm{2}{y} \\ $$$$\:\:\:\:\:\:\mathrm{2}{x}−\mathrm{2}{y}=\mathrm{0}\Rightarrow{x}={y} \\ $$$$\left({i}\right)\Rightarrow\mathrm{9}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} =\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} =\mathrm{1}={y}^{\mathrm{2}} \\ $$$${x}={y}=\mathrm{1}\:\vee\:{x}={y}=−\mathrm{1}\left(\:{invalid}\right) \\ $$$$\:\:\:\:\:\: \\ $$
Answered by MM42 last updated on 16/Sep/23
(3x−2y)(3x+2y)=5⇒3x−2y=(5/(3x+2y))  1−log_5 (3x−2y)−log_3 (3x−2y)=1  −((log(3x−2y))/(log5)) −((log(3x−2y))/(log3))=0  log(3x−2)(−(1/(log5))−(1/(log3)))=0  ⇒3x−2y=1⇒3x+2y=5  ⇒x=y=1 ✓
$$\left(\mathrm{3}{x}−\mathrm{2}{y}\right)\left(\mathrm{3}{x}+\mathrm{2}{y}\right)=\mathrm{5}\Rightarrow\mathrm{3}{x}−\mathrm{2}{y}=\frac{\mathrm{5}}{\mathrm{3}{x}+\mathrm{2}{y}} \\ $$$$\mathrm{1}−{log}_{\mathrm{5}} \left(\mathrm{3}{x}−\mathrm{2}{y}\right)−{log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{2}{y}\right)=\mathrm{1} \\ $$$$−\frac{{log}\left(\mathrm{3}{x}−\mathrm{2}{y}\right)}{{log}\mathrm{5}}\:−\frac{{log}\left(\mathrm{3}{x}−\mathrm{2}{y}\right)}{{log}\mathrm{3}}=\mathrm{0} \\ $$$${log}\left(\mathrm{3}{x}−\mathrm{2}\right)\left(−\frac{\mathrm{1}}{{log}\mathrm{5}}−\frac{\mathrm{1}}{{log}\mathrm{3}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{x}−\mathrm{2}{y}=\mathrm{1}\Rightarrow\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{5} \\ $$$$\Rightarrow{x}={y}=\mathrm{1}\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *