Menu Close

Question-197409




Question Number 197409 by mathlove last updated on 16/Sep/23
Commented by mathlove last updated on 16/Sep/23
any solution is corect and   any one is ancorect
$${any}\:{solution}\:{is}\:{corect}\:{and}\: \\ $$$${any}\:{one}\:{is}\:{ancorect}\: \\ $$
Commented by AST last updated on 16/Sep/23
(√(a×b))=(√a)×(√b) is only true if both a and b are  not negative
$$\sqrt{{a}×{b}}=\sqrt{{a}}×\sqrt{{b}}\:{is}\:{only}\:{true}\:{if}\:{both}\:{a}\:{and}\:{b}\:{are} \\ $$$${not}\:{negative} \\ $$
Commented by MM42 last updated on 16/Sep/23
1=(√1)=(√(−1×−1))=(√(−1))×(√(−1))=i×i=−1
$$\mathrm{1}=\sqrt{\mathrm{1}}=\sqrt{−\mathrm{1}×−\mathrm{1}}=\sqrt{−\mathrm{1}}×\sqrt{−\mathrm{1}}={i}×{i}=−\mathrm{1} \\ $$
Commented by mahdipoor last updated on 16/Sep/23
(√e^(2a+bi) )×(√e^(2x+yi) )=^? (√(e^(2a+bi) ×e^(2x+yi) ))  e^(a+b_n i) ×e^(x+y_n i) =^? (√e^(2(a+x)+(b+y)i) )  e^((a+x)+(b_n +y_n )i) =^? e^((a+x)+(b_n +y_n )i)   ⇒b_n +y_n   must same for L and R  ϕ_n =(ϕ/2) and  (ϕ/2)+π  (√(−1))×(√(−1))=(√(−1×−1))  ⇒(√e^(πi) )×(√e^(πi) )=(√e^(2πi) )  ⇒e^((π/2)i) ×e^((π/2)i) =e^((π+π)i          )   ⇒−1=1
$$\sqrt{{e}^{\mathrm{2}{a}+{bi}} }×\sqrt{{e}^{\mathrm{2}{x}+{yi}} }\overset{?} {=}\sqrt{{e}^{\mathrm{2}{a}+{bi}} ×{e}^{\mathrm{2}{x}+{yi}} } \\ $$$${e}^{{a}+{b}_{{n}} {i}} ×{e}^{{x}+{y}_{{n}} {i}} \overset{?} {=}\sqrt{{e}^{\mathrm{2}\left({a}+{x}\right)+\left({b}+{y}\right){i}} } \\ $$$${e}^{\left({a}+{x}\right)+\left({b}_{{n}} +{y}_{{n}} \right){i}} \overset{?} {=}{e}^{\left({a}+{x}\right)+\left({b}_{{n}} +{y}_{{n}} \right){i}} \\ $$$$\Rightarrow{b}_{{n}} +{y}_{{n}} \:\:{must}\:{same}\:{for}\:{L}\:{and}\:{R} \\ $$$$\varphi_{{n}} =\frac{\varphi}{\mathrm{2}}\:{and}\:\:\frac{\varphi}{\mathrm{2}}+\pi \\ $$$$\sqrt{−\mathrm{1}}×\sqrt{−\mathrm{1}}=\sqrt{−\mathrm{1}×−\mathrm{1}} \\ $$$$\Rightarrow\sqrt{{e}^{\pi{i}} }×\sqrt{{e}^{\pi{i}} }=\sqrt{{e}^{\mathrm{2}\pi{i}} } \\ $$$$\Rightarrow{e}^{\frac{\pi}{\mathrm{2}}{i}} ×{e}^{\frac{\pi}{\mathrm{2}}{i}} ={e}^{\left(\pi+\pi\right){i}\:\:\:\:\:\:\:\:\:\:} \\ $$$$\Rightarrow−\mathrm{1}=\mathrm{1} \\ $$
Commented by Alleddawi last updated on 17/Sep/23
The second mathematical expression is correct.  Because (√a)×(√b)=(√(a×b ))  , if at most one of a and b is negative.
$${The}\:{second}\:{mathematical}\:{expression}\:{is}\:{correct}. \\ $$$${Because}\:\sqrt{{a}}×\sqrt{{b}}=\sqrt{{a}×{b}\:}\:\:,\:{if}\:{at}\:{most}\:{one}\:{of}\:{a}\:{and}\:{b}\:{is}\:{negative}. \\ $$
Answered by Frix last updated on 16/Sep/23
x_j =r_j e^(iθ_j ) ; r_j ≥0∧−π<θ_j ≤π  x_3 =x_1 x_2 =r_1 e^(iθ_1 ) r_2 e^(iθ_2 ) =r_1 r_2 e^(i(θ_1 +θ_2 )) =r_3 e^(iθ_3 ^� )   x_4 =x^k =(re^(iθ) )^k =r^k e^(ikθ) =r_4 e^(iθ_4 ^� )   We must have −π<θ_j ≤π ⇒  θ_j =mod (θ_j ^� , π) −(π/2)(1−sign sin θ_j ^� )       [θ_j ^� =2nπ ⇒ θ_j =0]    (√(−4))×(√(−9))=(√(4e^(iπ) ))×(√(9e^(iπ) ))=(√4)e^(i(π/2)) (√9)e^(i(π/2)) =  =2×3×e^(i(π/2)+i(π/2)) =6e^(iπ) =−6  (√((−4)(−9)))=(√(4e^(iπ) ×9e^(iπ) ))=(√(36e^(2iπ) ))=(√(36e^0 ))=  =(√(36))=6    All depends on the correct execution of the  rules. If you don′t know the rules, learn them.  Sadly on the www there is more opinion than  knowledge. The set of rules was made to get  consistency.
$${x}_{{j}} ={r}_{{j}} \mathrm{e}^{\mathrm{i}\theta_{{j}} } ;\:{r}_{{j}} \geqslant\mathrm{0}\wedge−\pi<\theta_{{j}} \leqslant\pi \\ $$$${x}_{\mathrm{3}} ={x}_{\mathrm{1}} {x}_{\mathrm{2}} ={r}_{\mathrm{1}} \mathrm{e}^{\mathrm{i}\theta_{\mathrm{1}} } {r}_{\mathrm{2}} \mathrm{e}^{\mathrm{i}\theta_{\mathrm{2}} } ={r}_{\mathrm{1}} {r}_{\mathrm{2}} \mathrm{e}^{\mathrm{i}\left(\theta_{\mathrm{1}} +\theta_{\mathrm{2}} \right)} ={r}_{\mathrm{3}} \mathrm{e}^{\mathrm{i}\bar {\theta}_{\mathrm{3}} } \\ $$$${x}_{\mathrm{4}} ={x}^{{k}} =\left({r}\mathrm{e}^{\mathrm{i}\theta} \right)^{{k}} ={r}^{{k}} \mathrm{e}^{\mathrm{i}{k}\theta} ={r}_{\mathrm{4}} \mathrm{e}^{\mathrm{i}\bar {\theta}_{\mathrm{4}} } \\ $$$$\mathrm{We}\:\mathrm{must}\:\mathrm{have}\:−\pi<\theta_{{j}} \leqslant\pi\:\Rightarrow \\ $$$$\theta_{{j}} =\mathrm{mod}\:\left(\bar {\theta}_{{j}} ,\:\pi\right)\:−\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\mathrm{sign}\:\mathrm{sin}\:\bar {\theta}_{{j}} \right) \\ $$$$\:\:\:\:\:\left[\bar {\theta}_{{j}} =\mathrm{2}{n}\pi\:\Rightarrow\:\theta_{{j}} =\mathrm{0}\right] \\ $$$$ \\ $$$$\sqrt{−\mathrm{4}}×\sqrt{−\mathrm{9}}=\sqrt{\mathrm{4e}^{\mathrm{i}\pi} }×\sqrt{\mathrm{9e}^{\mathrm{i}\pi} }=\sqrt{\mathrm{4}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{9}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} = \\ $$$$=\mathrm{2}×\mathrm{3}×\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}+\mathrm{i}\frac{\pi}{\mathrm{2}}} =\mathrm{6e}^{\mathrm{i}\pi} =−\mathrm{6} \\ $$$$\sqrt{\left(−\mathrm{4}\right)\left(−\mathrm{9}\right)}=\sqrt{\mathrm{4e}^{\mathrm{i}\pi} ×\mathrm{9e}^{\mathrm{i}\pi} }=\sqrt{\mathrm{36e}^{\mathrm{2i}\pi} }=\sqrt{\mathrm{36e}^{\mathrm{0}} }= \\ $$$$=\sqrt{\mathrm{36}}=\mathrm{6} \\ $$$$ \\ $$$$\mathrm{All}\:\mathrm{depends}\:\mathrm{on}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{execution}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{rules}.\:\mathrm{If}\:\mathrm{you}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{rules},\:\mathrm{learn}\:\mathrm{them}. \\ $$$$\mathrm{Sadly}\:\mathrm{on}\:\mathrm{the}\:\mathrm{www}\:\mathrm{there}\:\mathrm{is}\:\mathrm{more}\:\mathrm{opinion}\:\mathrm{than} \\ $$$$\mathrm{knowledge}.\:\mathrm{The}\:\mathrm{set}\:\mathrm{of}\:\mathrm{rules}\:\mathrm{was}\:\mathrm{made}\:\mathrm{to}\:\mathrm{get} \\ $$$$\mathrm{consistency}.\: \\ $$
Commented by Frix last updated on 16/Sep/23
Btw the reason for −π<θ≤π is to get useful  results for conjugated numbers  (√(2+2(√3)i))=(√3)+i  (√(2−2(√3)i))=(√3)−i  2+2(√3)i=4e^(i(π/3)) ; (√(4e^(i(π/3)) ))=2e^(i(π/6)) =(√3)+i  2−2(√3)i=4e^(−i(π/3)) ; (√(4e^(−i(π/3)) ))=2e^(−i(π/6)) =(√3)−i  If we′d use 0≤θ<2π  2−2(√3)i=4e^(i((5π)/3)) ; (√(4e^(i((5π)/3)) ))=2e^(i((5π)/6)) =−(√3)+i
$$\mathrm{Btw}\:\mathrm{the}\:\mathrm{reason}\:\mathrm{for}\:−\pi<\theta\leqslant\pi\:\mathrm{is}\:\mathrm{to}\:\mathrm{get}\:\mathrm{useful} \\ $$$$\mathrm{results}\:\mathrm{for}\:\mathrm{conjugated}\:\mathrm{numbers} \\ $$$$\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}}=\sqrt{\mathrm{3}}+\mathrm{i} \\ $$$$\sqrt{\mathrm{2}−\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}}=\sqrt{\mathrm{3}}−\mathrm{i} \\ $$$$\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}=\mathrm{4e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} ;\:\sqrt{\mathrm{4e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} }=\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{6}}} =\sqrt{\mathrm{3}}+\mathrm{i} \\ $$$$\mathrm{2}−\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}=\mathrm{4e}^{−\mathrm{i}\frac{\pi}{\mathrm{3}}} ;\:\sqrt{\mathrm{4e}^{−\mathrm{i}\frac{\pi}{\mathrm{3}}} }=\mathrm{2e}^{−\mathrm{i}\frac{\pi}{\mathrm{6}}} =\sqrt{\mathrm{3}}−\mathrm{i} \\ $$$$\mathrm{If}\:\mathrm{we}'\mathrm{d}\:\mathrm{use}\:\mathrm{0}\leqslant\theta<\mathrm{2}\pi \\ $$$$\mathrm{2}−\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}=\mathrm{4e}^{\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{3}}} ;\:\sqrt{\mathrm{4e}^{\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{3}}} }=\mathrm{2e}^{\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{6}}} =−\sqrt{\mathrm{3}}+\mathrm{i} \\ $$
Commented by mathlove last updated on 17/Sep/23
thanks for all
$${thanks}\:{for}\:{all} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *