Question Number 197409 by mathlove last updated on 16/Sep/23
Commented by mathlove last updated on 16/Sep/23
$${any}\:{solution}\:{is}\:{corect}\:{and}\: \\ $$$${any}\:{one}\:{is}\:{ancorect}\: \\ $$
Commented by AST last updated on 16/Sep/23
$$\sqrt{{a}×{b}}=\sqrt{{a}}×\sqrt{{b}}\:{is}\:{only}\:{true}\:{if}\:{both}\:{a}\:{and}\:{b}\:{are} \\ $$$${not}\:{negative} \\ $$
Commented by MM42 last updated on 16/Sep/23
$$\mathrm{1}=\sqrt{\mathrm{1}}=\sqrt{−\mathrm{1}×−\mathrm{1}}=\sqrt{−\mathrm{1}}×\sqrt{−\mathrm{1}}={i}×{i}=−\mathrm{1} \\ $$
Commented by mahdipoor last updated on 16/Sep/23
$$\sqrt{{e}^{\mathrm{2}{a}+{bi}} }×\sqrt{{e}^{\mathrm{2}{x}+{yi}} }\overset{?} {=}\sqrt{{e}^{\mathrm{2}{a}+{bi}} ×{e}^{\mathrm{2}{x}+{yi}} } \\ $$$${e}^{{a}+{b}_{{n}} {i}} ×{e}^{{x}+{y}_{{n}} {i}} \overset{?} {=}\sqrt{{e}^{\mathrm{2}\left({a}+{x}\right)+\left({b}+{y}\right){i}} } \\ $$$${e}^{\left({a}+{x}\right)+\left({b}_{{n}} +{y}_{{n}} \right){i}} \overset{?} {=}{e}^{\left({a}+{x}\right)+\left({b}_{{n}} +{y}_{{n}} \right){i}} \\ $$$$\Rightarrow{b}_{{n}} +{y}_{{n}} \:\:{must}\:{same}\:{for}\:{L}\:{and}\:{R} \\ $$$$\varphi_{{n}} =\frac{\varphi}{\mathrm{2}}\:{and}\:\:\frac{\varphi}{\mathrm{2}}+\pi \\ $$$$\sqrt{−\mathrm{1}}×\sqrt{−\mathrm{1}}=\sqrt{−\mathrm{1}×−\mathrm{1}} \\ $$$$\Rightarrow\sqrt{{e}^{\pi{i}} }×\sqrt{{e}^{\pi{i}} }=\sqrt{{e}^{\mathrm{2}\pi{i}} } \\ $$$$\Rightarrow{e}^{\frac{\pi}{\mathrm{2}}{i}} ×{e}^{\frac{\pi}{\mathrm{2}}{i}} ={e}^{\left(\pi+\pi\right){i}\:\:\:\:\:\:\:\:\:\:} \\ $$$$\Rightarrow−\mathrm{1}=\mathrm{1} \\ $$
Commented by Alleddawi last updated on 17/Sep/23
$${The}\:{second}\:{mathematical}\:{expression}\:{is}\:{correct}. \\ $$$${Because}\:\sqrt{{a}}×\sqrt{{b}}=\sqrt{{a}×{b}\:}\:\:,\:{if}\:{at}\:{most}\:{one}\:{of}\:{a}\:{and}\:{b}\:{is}\:{negative}. \\ $$
Answered by Frix last updated on 16/Sep/23