Menu Close

0-pi-2-dx-3-tan-x-




Question Number 197436 by horsebrand11 last updated on 17/Sep/23
∫_0 ^(π/2)  (dx/(3+tan x)) =?
$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{dx}}{\mathrm{3}+\mathrm{tan}\:\mathrm{x}}\:=? \\ $$
Answered by Frix last updated on 17/Sep/23
∫(dx/(3+tan x)) =^(t=tan x)  ∫(dt/((t+3)(t^2 +1)))=  =(1/(10))∫((1/(t+3))+(3/(t^2 +1))−(t/(t^2 +1)))dt=  =(1/(10))(ln (t+3) +3tan^(−1)  t −(1/2)ln (t^2 +1))=  =((3x)/(10))+((ln ∣3cos x +sin x∣)/(10))+C  ⇒ Answer is ((3π)/(20))−((ln 3)/(10))
$$\int\frac{{dx}}{\mathrm{3}+\mathrm{tan}\:{x}}\:\overset{{t}=\mathrm{tan}\:{x}} {=}\:\int\frac{{dt}}{\left({t}+\mathrm{3}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\int\left(\frac{\mathrm{1}}{{t}+\mathrm{3}}+\frac{\mathrm{3}}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\right){dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{ln}\:\left({t}+\mathrm{3}\right)\:+\mathrm{3tan}^{−\mathrm{1}} \:{t}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +\mathrm{1}\right)\right)= \\ $$$$=\frac{\mathrm{3}{x}}{\mathrm{10}}+\frac{\mathrm{ln}\:\mid\mathrm{3cos}\:{x}\:+\mathrm{sin}\:{x}\mid}{\mathrm{10}}+{C} \\ $$$$\Rightarrow\:\mathrm{Answer}\:\mathrm{is}\:\frac{\mathrm{3}\pi}{\mathrm{20}}−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *