Prove-that-x-0-lnt-t-2-1-dt-pi-2-0-arctan-xtan-d-x-1-x-lnt-t-2-1-arctant-dt-pi-8-pi-0-arctan-1-2-x-1-x-sint-dt- Tinku Tara September 18, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 197461 by Erico last updated on 18/Sep/23 Provethat:∙∫0xlntt2−1dt=∫0π2arctan(xtanθ)dθ∙∫1xxlntt2−1arctantdt=π8∫0πarctan(12(x−1x)sint)dt Answered by witcher3 last updated on 18/Sep/23 f(x)=∫0xln(t)t2−1dt,f(0)=0f′(x)=ln(x)x2−1g(x)=∫0π2arctan(xtan(a))dag(0)=0g′(x)=∫0π2tan(a)1+(xtan(a))2da=∫0π2sin(a)cos(a)cos2(a)+x2sin2(a)dx=∫0π2sin(2a)dacos(2a)+1+x2(1−cos(2a),cos(2a)=y=−12∫1−1dy1+x2+(1−x2)y=12(1−x2).{ln[(1+x2)+(1−x2)y]}−1112(1−x2)ln(22x2)=ln(x)x2−1=f′(x)f′(x)=g′(x),f(0)=g(0)⇒f(x)=g(x)(2)H(x)=∫1xxln(t)t2−1tan−1(t)dtt→1t⇒H(x)=∫1xxln(t)t2−1(π2−tan−1(t))dt,∀x∈R+∗H(x)=π2∫1xxln(t)t2−1dt−H(x)H(x)=π4∫1xxln(t)t2−1dt=π4(∫0xln(t)t2−1dt−∫01xln(t)t2−1dt)=π4(f(x)−f(1x))=π4(g(x)−g(1x))=π4tan−1(xtan(a))−π4tan−(tan(a)x)tan−1(a)−tan−1(b)=tan−1(a−b1+ab),π4∫0π2(tan−((x−1x)tan(a)1+tan2(a)))da=π4∫0π2tan−1((x−1x)sin(2a)2)da2a→a=π8∫0πtan−1(12(x−1x)sin(a))da Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-197462Next Next post: find-the-sum-1-x-1-2-x-2-1-4-x-4-1-2-n-x-2n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.