Menu Close

Prove-that-x-0-lnt-t-2-1-dt-pi-2-0-arctan-xtan-d-x-1-x-lnt-t-2-1-arctant-dt-pi-8-pi-0-arctan-1-2-x-1-x-sint-dt-




Question Number 197461 by Erico last updated on 18/Sep/23
Prove that:  •∫^( x) _( 0) ((lnt)/(t^2 −1))dt=∫^( (π/2)) _( 0) arctan(xtanθ)dθ  •  ∫^( x) _( (1/x)) ((lnt)/(t^2 −1))arctant dt=(π/8)∫^( π) _( 0) arctan((1/2)(x−(1/x))sint)dt
Provethat:0xlntt21dt=0π2arctan(xtanθ)dθ1xxlntt21arctantdt=π80πarctan(12(x1x)sint)dt
Answered by witcher3 last updated on 18/Sep/23
f(x)=∫_0 ^x ((ln(t))/(t^2 −1))dt,f(0)=0  f′(x)=((ln(x))/(x^2 −1))  g(x)=∫_0 ^(π/2) arctan(xtan (a))da  g(0)=0  g′(x)=∫_0 ^(π/2) ((tan(a))/(1+(xtan(a))^2 ))da  =∫_0 ^(π/2) ((sin(a)cos(a))/(cos^2 (a)+x^2 sin^2 (a)))dx  =∫_0 ^(π/2) ((sin(2a)da)/(cos(2a)+1+x^2 (1−cos(2a))),cos(2a)=y  =−(1/2)∫_1 ^(−1) (dy/(1+x^2 +(1−x^2 )y))  =(1/(2(1−x^2 ))).{ln [(1+x^2 )+(1−x^2 )y]}_(−1) ^1   (1/(2(1−x^2 )))ln((2/(2x^2 )))=((ln(x))/(x^2 −1))=f′(x)  f′(x)=g′(x) ,f(0)=g(0)⇒f(x)=g(x)  (2)H(x)=∫_(1/x) ^x ((ln(t))/(t^2 −1))tan^(−1) (t)dt  t→(1/t)⇒H(x)=∫_(1/x) ^x ((ln(t))/(t^2 −1))((π/2)−tan^(−1) (t))dt,∀x∈R_+ ^∗   H(x)=(π/2)∫_(1/x) ^x ((ln(t))/(t^2 −1))dt−H(x)  H(x)=(π/4)∫_(1/x) ^x ((ln(t))/(t^2 −1))dt=(π/4)(∫_0 ^x ((ln(t))/(t^2 −1))dt−∫_0 ^(1/x) ((ln(t))/(t^2 −1))dt)  =(π/4)(f(x)−f((1/x)))=(π/4)(g(x)−g((1/x)))  =(π/4)tan^(−1) (xtan(a))−(π/4)tan^− (((tan(a))/x))  tan^(−1) (a)−tan^(−1) (b)=tan^(−1) (((a−b)/(1+ab))),  (π/4)∫_0 ^(π/2) (tan^− ((((x−(1/x))tan (a))/(1+tan^2 (a)))))da  =(π/4)∫_0 ^(π/2) tan^(−1) ((x−(1/x))((sin(2a))/2))da  2a→a  =(π/8)∫_0 ^π tan^(−1) ((1/2)(x−(1/x))sin(a))da
f(x)=0xln(t)t21dt,f(0)=0f(x)=ln(x)x21g(x)=0π2arctan(xtan(a))dag(0)=0g(x)=0π2tan(a)1+(xtan(a))2da=0π2sin(a)cos(a)cos2(a)+x2sin2(a)dx=0π2sin(2a)dacos(2a)+1+x2(1cos(2a),cos(2a)=y=1211dy1+x2+(1x2)y=12(1x2).{ln[(1+x2)+(1x2)y]}1112(1x2)ln(22x2)=ln(x)x21=f(x)f(x)=g(x),f(0)=g(0)f(x)=g(x)(2)H(x)=1xxln(t)t21tan1(t)dtt1tH(x)=1xxln(t)t21(π2tan1(t))dt,xR+H(x)=π21xxln(t)t21dtH(x)H(x)=π41xxln(t)t21dt=π4(0xln(t)t21dt01xln(t)t21dt)=π4(f(x)f(1x))=π4(g(x)g(1x))=π4tan1(xtan(a))π4tan(tan(a)x)tan1(a)tan1(b)=tan1(ab1+ab),π40π2(tan((x1x)tan(a)1+tan2(a)))da=π40π2tan1((x1x)sin(2a)2)da2aa=π80πtan1(12(x1x)sin(a))da

Leave a Reply

Your email address will not be published. Required fields are marked *