Question Number 197479 by pticantor last updated on 19/Sep/23
$$\boldsymbol{{find}}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{m}}}\:\boldsymbol{{U}}_{\boldsymbol{{n}}} \:=\sqrt[{\mathrm{3}}]{\boldsymbol{{n}}^{\mathrm{3}} +\mathrm{2}\boldsymbol{{n}}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{\boldsymbol{{n}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{{n}}^{\mathrm{2}} }\: \\ $$
Commented by Frix last updated on 19/Sep/23
$$\mathrm{Strange}\:\mathrm{method}\:\mathrm{but}\:\mathrm{it}\:\mathrm{works} \\ $$$${u}^{\frac{\mathrm{1}}{\mathrm{3}}} +{v}^{\frac{\mathrm{1}}{\mathrm{3}}} ={c} \\ $$$$\Leftrightarrow \\ $$$$\left({u}−{v}\right)^{\mathrm{3}} −{c}^{\mathrm{3}} \left(\mathrm{3}\left({u}^{\mathrm{2}} +\mathrm{7}{uv}+{v}^{\mathrm{2}} \right)−\mathrm{3}{c}^{\mathrm{3}} \left({u}−{v}\right)+{c}^{\mathrm{6}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{27}{c}^{\mathrm{3}} −\mathrm{125}\right){n}^{\mathrm{6}} −\mathrm{27}{c}^{\mathrm{3}} {n}^{\mathrm{5}} −\mathrm{87}{c}^{\mathrm{3}} {n}^{\mathrm{4}} −\mathrm{15}{c}^{\mathrm{6}} {n}^{\mathrm{2}} +{c}^{\mathrm{9}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{27}{c}^{\mathrm{3}} −\mathrm{125}\neq\mathrm{0}\:\Leftrightarrow\:{c}\neq\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} \:=\frac{\mathrm{5}}{\mathrm{3}} \\ $$
Answered by MM42 last updated on 19/Sep/23
$${lim}_{\:{n}\rightarrow\infty} \:\:\sqrt[{\mathrm{3}}]{\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} +{p}_{\mathrm{2}} \left({n}\right)}−\sqrt[{\mathrm{3}}]{\left({n}−\mathrm{1}\right)^{\mathrm{3}} +{q}_{\mathrm{2}} \left({n}\right)} \\ $$$$={lim}_{{n}\rightarrow\infty} \:\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+\frac{{p}_{\mathrm{2}} \left({n}\right)}{\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} }}\:\:\right)−\left({n}−\mathrm{1}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+\frac{{q}_{\mathrm{2}} \left({n}\right)}{\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} }}\:\:\right)\: \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{1}=\frac{\mathrm{5}}{\mathrm{3}}\:\:\checkmark \\ $$$$ \\ $$
Answered by universe last updated on 19/Sep/23
$$\:\:\:\left(\mathrm{1}+{x}\right)^{{n}} \:=\:\:\mathrm{1}+{nx}+…..\:\:\:\:\:{where}\:−\mathrm{1}<{x}<\mathrm{1} \\ $$$$\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:{n}\left[\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)^{\mathrm{1}/\mathrm{3}} −\:\left(\mathrm{1}−\frac{\mathrm{3}}{{n}}\right)^{\mathrm{1}/\mathrm{3}} \right] \\ $$$$\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:{n}\left[\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}{n}}−\mathrm{1}+\frac{\mathrm{3}}{\mathrm{3}{n}}\right] \\ $$$$\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:{n}\:×\:\frac{\mathrm{5}}{\mathrm{3}{n}}\:\:=\:\frac{\mathrm{5}}{\mathrm{3}} \\ $$